lsxi77777's picture
commit message
a930e1f
import warnings
from pathlib import Path
from types import SimpleNamespace
from typing import Callable, List, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
try:
from flash_attn.modules.mha import FlashCrossAttention
except ModuleNotFoundError:
FlashCrossAttention = None
if FlashCrossAttention or hasattr(F, "scaled_dot_product_attention"):
FLASH_AVAILABLE = True
else:
FLASH_AVAILABLE = False
torch.backends.cudnn.deterministic = True
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
def normalize_keypoints(
kpts: torch.Tensor, size: Optional[torch.Tensor] = None
) -> torch.Tensor:
if size is None:
size = 1 + kpts.max(-2).values - kpts.min(-2).values
elif not isinstance(size, torch.Tensor):
size = torch.tensor(size, device=kpts.device, dtype=kpts.dtype)
size = size.to(kpts)
shift = size / 2
scale = size.max(-1).values / 2
kpts = (kpts - shift[..., None, :]) / scale[..., None, None]
return kpts
def pad_to_length(x: torch.Tensor, length: int) -> Tuple[torch.Tensor]:
if length <= x.shape[-2]:
return x, torch.ones_like(x[..., :1], dtype=torch.bool)
pad = torch.ones(
*x.shape[:-2], length - x.shape[-2], x.shape[-1], device=x.device, dtype=x.dtype
)
y = torch.cat([x, pad], dim=-2)
mask = torch.zeros(*y.shape[:-1], 1, dtype=torch.bool, device=x.device)
mask[..., : x.shape[-2], :] = True
return y, mask
def rotate_half(x: torch.Tensor) -> torch.Tensor:
x = x.unflatten(-1, (-1, 2))
x1, x2 = x.unbind(dim=-1)
return torch.stack((-x2, x1), dim=-1).flatten(start_dim=-2)
def apply_cached_rotary_emb(freqs: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
return (t * freqs[0]) + (rotate_half(t) * freqs[1])
class LearnableFourierPositionalEncoding(nn.Module):
def __init__(self, M: int, dim: int, F_dim: int = None, gamma: float = 1.0) -> None:
super().__init__()
F_dim = F_dim if F_dim is not None else dim
self.gamma = gamma
self.Wr = nn.Linear(M, F_dim // 2, bias=False)
nn.init.normal_(self.Wr.weight.data, mean=0, std=self.gamma ** -2)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""encode position vector"""
projected = self.Wr(x)
cosines, sines = torch.cos(projected), torch.sin(projected)
emb = torch.stack([cosines, sines], 0).unsqueeze(-3)
return emb.repeat_interleave(2, dim=-1)
class TokenConfidence(nn.Module):
def __init__(self, dim: int) -> None:
super().__init__()
self.token = nn.Sequential(nn.Linear(dim, 1), nn.Sigmoid())
def forward(self, desc0: torch.Tensor, desc1: torch.Tensor):
"""get confidence tokens"""
return (
self.token(desc0.detach()).squeeze(-1),
self.token(desc1.detach()).squeeze(-1),
)
class Attention(nn.Module):
def __init__(self, allow_flash: bool) -> None:
super().__init__()
if allow_flash and not FLASH_AVAILABLE:
warnings.warn(
"FlashAttention is not available. For optimal speed, "
"consider installing torch >= 2.0 or flash-attn.",
stacklevel=2,
)
self.enable_flash = allow_flash and FLASH_AVAILABLE
self.has_sdp = hasattr(F, "scaled_dot_product_attention")
if allow_flash and FlashCrossAttention:
self.flash_ = FlashCrossAttention()
if self.has_sdp:
torch.backends.cuda.enable_flash_sdp(allow_flash)
def forward(self, q, k, v, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
if q.shape[-2] == 0 or k.shape[-2] == 0:
return q.new_zeros((*q.shape[:-1], v.shape[-1]))
if self.enable_flash and q.device.type == "cuda":
# use torch 2.0 scaled_dot_product_attention with flash
if self.has_sdp:
args = [x.half().contiguous() for x in [q, k, v]]
v = F.scaled_dot_product_attention(*args, attn_mask=mask).to(q.dtype)
return v if mask is None else v.nan_to_num()
else:
assert mask is None
q, k, v = [x.transpose(-2, -3).contiguous() for x in [q, k, v]]
m = self.flash_(q.half(), torch.stack([k, v], 2).half())
return m.transpose(-2, -3).to(q.dtype).clone()
elif self.has_sdp:
args = [x.contiguous() for x in [q, k, v]]
v = F.scaled_dot_product_attention(*args, attn_mask=mask)
return v if mask is None else v.nan_to_num()
else:
s = q.shape[-1] ** -0.5
sim = torch.einsum("...id,...jd->...ij", q, k) * s
if mask is not None:
sim.masked_fill(~mask, -float("inf"))
attn = F.softmax(sim, -1)
return torch.einsum("...ij,...jd->...id", attn, v)
class SelfBlock(nn.Module):
def __init__(
self, embed_dim: int, num_heads: int, flash: bool = False, bias: bool = True
) -> None:
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
assert self.embed_dim % num_heads == 0
self.head_dim = self.embed_dim // num_heads
self.Wqkv = nn.Linear(embed_dim, 3 * embed_dim, bias=bias)
self.inner_attn = Attention(flash)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.ffn = nn.Sequential(
nn.Linear(2 * embed_dim, 2 * embed_dim),
nn.LayerNorm(2 * embed_dim, elementwise_affine=True),
nn.GELU(),
nn.Linear(2 * embed_dim, embed_dim),
)
def forward(
self,
x: torch.Tensor,
encoding: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
qkv = self.Wqkv(x)
qkv = qkv.unflatten(-1, (self.num_heads, -1, 3)).transpose(1, 2)
q, k, v = qkv[..., 0], qkv[..., 1], qkv[..., 2]
q = apply_cached_rotary_emb(encoding, q)
k = apply_cached_rotary_emb(encoding, k)
context = self.inner_attn(q, k, v, mask=mask)
message = self.out_proj(context.transpose(1, 2).flatten(start_dim=-2))
return x + self.ffn(torch.cat([x, message], -1))
class CrossBlock(nn.Module):
def __init__(
self, embed_dim: int, num_heads: int, flash: bool = False, bias: bool = True
) -> None:
super().__init__()
self.heads = num_heads
dim_head = embed_dim // num_heads
self.scale = dim_head ** -0.5
inner_dim = dim_head * num_heads
self.to_qk = nn.Linear(embed_dim, inner_dim, bias=bias)
self.to_v = nn.Linear(embed_dim, inner_dim, bias=bias)
self.to_out = nn.Linear(inner_dim, embed_dim, bias=bias)
self.ffn = nn.Sequential(
nn.Linear(2 * embed_dim, 2 * embed_dim),
nn.LayerNorm(2 * embed_dim, elementwise_affine=True),
nn.GELU(),
nn.Linear(2 * embed_dim, embed_dim),
)
if flash and FLASH_AVAILABLE:
self.flash = Attention(True)
else:
self.flash = None
def map_(self, func: Callable, x0: torch.Tensor, x1: torch.Tensor):
return func(x0), func(x1)
def forward(
self, x0: torch.Tensor, x1: torch.Tensor, mask: Optional[torch.Tensor] = None
) -> List[torch.Tensor]:
qk0, qk1 = self.map_(self.to_qk, x0, x1)
v0, v1 = self.map_(self.to_v, x0, x1)
qk0, qk1, v0, v1 = map(
lambda t: t.unflatten(-1, (self.heads, -1)).transpose(1, 2),
(qk0, qk1, v0, v1),
)
if self.flash is not None and qk0.device.type == "cuda":
m0 = self.flash(qk0, qk1, v1, mask)
m1 = self.flash(
qk1, qk0, v0, mask.transpose(-1, -2) if mask is not None else None
)
else:
qk0, qk1 = qk0 * self.scale ** 0.5, qk1 * self.scale ** 0.5
sim = torch.einsum("bhid, bhjd -> bhij", qk0, qk1)
if mask is not None:
sim = sim.masked_fill(~mask, -float("inf"))
attn01 = F.softmax(sim, dim=-1)
attn10 = F.softmax(sim.transpose(-2, -1).contiguous(), dim=-1)
m0 = torch.einsum("bhij, bhjd -> bhid", attn01, v1)
m1 = torch.einsum("bhji, bhjd -> bhid", attn10.transpose(-2, -1), v0)
if mask is not None:
m0, m1 = m0.nan_to_num(), m1.nan_to_num()
m0, m1 = self.map_(lambda t: t.transpose(1, 2).flatten(start_dim=-2), m0, m1)
m0, m1 = self.map_(self.to_out, m0, m1)
x0 = x0 + self.ffn(torch.cat([x0, m0], -1))
x1 = x1 + self.ffn(torch.cat([x1, m1], -1))
return x0, x1
class TransformerLayer(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
self.self_attn = SelfBlock(*args, **kwargs)
self.cross_attn = CrossBlock(*args, **kwargs)
def forward(
self,
desc0,
desc1,
encoding0,
encoding1,
mask0: Optional[torch.Tensor] = None,
mask1: Optional[torch.Tensor] = None,
):
if mask0 is not None and mask1 is not None:
return self.masked_forward(desc0, desc1, encoding0, encoding1, mask0, mask1)
else:
desc0 = self.self_attn(desc0, encoding0)
desc1 = self.self_attn(desc1, encoding1)
return self.cross_attn(desc0, desc1)
# This part is compiled and allows padding inputs
def masked_forward(self, desc0, desc1, encoding0, encoding1, mask0, mask1):
mask = mask0 & mask1.transpose(-1, -2)
mask0 = mask0 & mask0.transpose(-1, -2)
mask1 = mask1 & mask1.transpose(-1, -2)
desc0 = self.self_attn(desc0, encoding0, mask0)
desc1 = self.self_attn(desc1, encoding1, mask1)
return self.cross_attn(desc0, desc1, mask)
def sigmoid_log_double_softmax(
sim: torch.Tensor, z0: torch.Tensor, z1: torch.Tensor
) -> torch.Tensor:
"""create the log assignment matrix from logits and similarity"""
b, m, n = sim.shape
certainties = F.logsigmoid(z0) + F.logsigmoid(z1).transpose(1, 2)
scores0 = F.log_softmax(sim, 2)
scores1 = F.log_softmax(sim.transpose(-1, -2).contiguous(), 2).transpose(-1, -2)
scores = sim.new_full((b, m + 1, n + 1), 0)
scores[:, :m, :n] = scores0 + scores1 + certainties
scores[:, :-1, -1] = F.logsigmoid(-z0.squeeze(-1))
scores[:, -1, :-1] = F.logsigmoid(-z1.squeeze(-1))
return scores
class MatchAssignment(nn.Module):
def __init__(self, dim: int) -> None:
super().__init__()
self.dim = dim
self.matchability = nn.Linear(dim, 1, bias=True)
self.final_proj = nn.Linear(dim, dim, bias=True)
def forward(self, desc0: torch.Tensor, desc1: torch.Tensor):
"""build assignment matrix from descriptors"""
mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1)
_, _, d = mdesc0.shape
mdesc0, mdesc1 = mdesc0 / d ** 0.25, mdesc1 / d ** 0.25
sim = torch.einsum("bmd,bnd->bmn", mdesc0, mdesc1)
z0 = self.matchability(desc0)
z1 = self.matchability(desc1)
scores = sigmoid_log_double_softmax(sim, z0, z1)
return scores, sim
def get_matchability(self, desc: torch.Tensor):
return torch.sigmoid(self.matchability(desc)).squeeze(-1)
def filter_matches(scores: torch.Tensor, th: float):
"""obtain matches from a log assignment matrix [Bx M+1 x N+1]"""
max0, max1 = scores[:, :-1, :-1].max(2), scores[:, :-1, :-1].max(1)
m0, m1 = max0.indices, max1.indices
indices0 = torch.arange(m0.shape[1], device=m0.device)[None]
indices1 = torch.arange(m1.shape[1], device=m1.device)[None]
mutual0 = indices0 == m1.gather(1, m0)
mutual1 = indices1 == m0.gather(1, m1)
max0_exp = max0.values.exp()
zero = max0_exp.new_tensor(0)
mscores0 = torch.where(mutual0, max0_exp, zero)
mscores1 = torch.where(mutual1, mscores0.gather(1, m1), zero)
valid0 = mutual0 & (mscores0 > th)
valid1 = mutual1 & valid0.gather(1, m1)
m0 = torch.where(valid0, m0, -1)
m1 = torch.where(valid1, m1, -1)
return m0, m1, mscores0, mscores1
class LightGlue(nn.Module):
default_conf = {
"name": "lightglue", # just for interfacing
"input_dim": 256, # input descriptor dimension (autoselected from weights)
"descriptor_dim": 256,
"add_scale_ori": False,
"n_layers": 9,
"num_heads": 4,
"flash": True, # enable FlashAttention if available.
"mp": False, # enable mixed precision
"depth_confidence": 0.95, # early stopping, disable with -1
"width_confidence": 0.99, # point pruning, disable with -1
"filter_threshold": 0.1, # match threshold
"weights": None,
'MINIMA': None,
'MINIMA_PATH': None,
}
# Point pruning involves an overhead (gather).
# Therefore, we only activate it if there are enough keypoints.
pruning_keypoint_thresholds = {
"cpu": -1,
"mps": -1,
"cuda": 1024,
"flash": 1536,
}
required_data_keys = ["image0", "image1"]
version = "v0.1_arxiv"
url = "https://github.com/cvg/LightGlue/releases/download/{}/{}_lightglue.pth"
features = {
"superpoint": {
"weights": "superpoint_lightglue",
"input_dim": 256,
},
"disk": {
"weights": "disk_lightglue",
"input_dim": 128,
},
"aliked": {
"weights": "aliked_lightglue",
"input_dim": 128,
},
"sift": {
"weights": "sift_lightglue",
"input_dim": 128,
"add_scale_ori": True,
},
"doghardnet": {
"weights": "doghardnet_lightglue",
"input_dim": 128,
"add_scale_ori": True,
},
}
def __init__(self, features="superpoint", **conf) -> None:
super().__init__()
self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
if features is not None:
if features not in self.features:
raise ValueError(
f"Unsupported features: {features} not in "
f"{{{','.join(self.features)}}}"
)
for k, v in self.features[features].items():
setattr(conf, k, v)
if conf.input_dim != conf.descriptor_dim:
self.input_proj = nn.Linear(conf.input_dim, conf.descriptor_dim, bias=True)
else:
self.input_proj = nn.Identity()
head_dim = conf.descriptor_dim // conf.num_heads
self.posenc = LearnableFourierPositionalEncoding(
2 + 2 * self.conf.add_scale_ori, head_dim, head_dim
)
h, n, d = conf.num_heads, conf.n_layers, conf.descriptor_dim
self.transformers = nn.ModuleList(
[TransformerLayer(d, h, conf.flash) for _ in range(n)]
)
self.log_assignment = nn.ModuleList([MatchAssignment(d) for _ in range(n)])
self.token_confidence = nn.ModuleList(
[TokenConfidence(d) for _ in range(n - 1)]
)
self.register_buffer(
"confidence_thresholds",
torch.Tensor(
[self.confidence_threshold(i) for i in range(self.conf.n_layers)]
),
)
state_dict = None
print('conf:', conf)
if features is not None:
fname = f"{conf.weights}_{self.version.replace('.', '-')}.pth"
state_dict = torch.hub.load_state_dict_from_url(
self.url.format(self.version, features), file_name=fname
)
self.load_state_dict(state_dict, strict=False)
elif conf.weights is not None and conf.weights is None:
path = Path(__file__).parent
path = path / "weights/{}.pth".format(self.conf.weights)
state_dict = torch.load(str(path), map_location="cpu")
if conf.MINIMA:
print('MINIMA')
# raise NotImplementedError
state_dict = torch.load(conf.MINIMA_path, map_location="cpu")
if state_dict:
# rename old state dict entries
for i in range(self.conf.n_layers):
pattern = f"self_attn.{i}", f"transformers.{i}.self_attn"
state_dict = {k.replace(*pattern): v for k, v in state_dict.items()}
pattern = f"cross_attn.{i}", f"transformers.{i}.cross_attn"
state_dict = {k.replace(*pattern): v for k, v in state_dict.items()}
self.load_state_dict(state_dict, strict=False)
# static lengths LightGlue is compiled for (only used with torch.compile)
self.static_lengths = None
def compile(
self, mode="reduce-overhead", static_lengths=[256, 512, 768, 1024, 1280, 1536]
):
if self.conf.width_confidence != -1:
warnings.warn(
"Point pruning is partially disabled for compiled forward.",
stacklevel=2,
)
torch._inductor.cudagraph_mark_step_begin()
for i in range(self.conf.n_layers):
self.transformers[i].masked_forward = torch.compile(
self.transformers[i].masked_forward, mode=mode, fullgraph=True
)
self.static_lengths = static_lengths
def forward(self, data: dict) -> dict:
"""
Match keypoints and descriptors between two images
Input (dict):
image0: dict
keypoints: [B x M x 2]
descriptors: [B x M x D]
image: [B x C x H x W] or image_size: [B x 2]
image1: dict
keypoints: [B x N x 2]
descriptors: [B x N x D]
image: [B x C x H x W] or image_size: [B x 2]
Output (dict):
matches0: [B x M]
matching_scores0: [B x M]
matches1: [B x N]
matching_scores1: [B x N]
matches: List[[Si x 2]]
scores: List[[Si]]
stop: int
prune0: [B x M]
prune1: [B x N]
"""
with torch.autocast(enabled=self.conf.mp, device_type="cuda"):
return self._forward(data)
def _forward(self, data: dict) -> dict:
for key in self.required_data_keys:
assert key in data, f"Missing key {key} in data"
data0, data1 = data["image0"], data["image1"]
kpts0, kpts1 = data0["keypoints"], data1["keypoints"]
b, m, _ = kpts0.shape
b, n, _ = kpts1.shape
device = kpts0.device
size0, size1 = data0.get("image_size"), data1.get("image_size")
kpts0 = normalize_keypoints(kpts0, size0).clone()
kpts1 = normalize_keypoints(kpts1, size1).clone()
if self.conf.add_scale_ori:
kpts0 = torch.cat(
[kpts0] + [data0[k].unsqueeze(-1) for k in ("scales", "oris")], -1
)
kpts1 = torch.cat(
[kpts1] + [data1[k].unsqueeze(-1) for k in ("scales", "oris")], -1
)
desc0 = data0["descriptors"].detach().contiguous()
desc1 = data1["descriptors"].detach().contiguous()
assert desc0.shape[-1] == self.conf.input_dim
assert desc1.shape[-1] == self.conf.input_dim
if torch.is_autocast_enabled():
desc0 = desc0.half()
desc1 = desc1.half()
mask0, mask1 = None, None
c = max(m, n)
do_compile = self.static_lengths and c <= max(self.static_lengths)
if do_compile:
kn = min([k for k in self.static_lengths if k >= c])
desc0, mask0 = pad_to_length(desc0, kn)
desc1, mask1 = pad_to_length(desc1, kn)
kpts0, _ = pad_to_length(kpts0, kn)
kpts1, _ = pad_to_length(kpts1, kn)
desc0 = self.input_proj(desc0)
desc1 = self.input_proj(desc1)
# cache positional embeddings
encoding0 = self.posenc(kpts0)
encoding1 = self.posenc(kpts1)
# GNN + final_proj + assignment
do_early_stop = self.conf.depth_confidence > 0
do_point_pruning = self.conf.width_confidence > 0 and not do_compile
pruning_th = self.pruning_min_kpts(device)
if do_point_pruning:
ind0 = torch.arange(0, m, device=device)[None]
ind1 = torch.arange(0, n, device=device)[None]
# We store the index of the layer at which pruning is detected.
prune0 = torch.ones_like(ind0)
prune1 = torch.ones_like(ind1)
token0, token1 = None, None
for i in range(self.conf.n_layers):
if desc0.shape[1] == 0 or desc1.shape[1] == 0: # no keypoints
break
desc0, desc1 = self.transformers[i](
desc0, desc1, encoding0, encoding1, mask0=mask0, mask1=mask1
)
if i == self.conf.n_layers - 1:
continue # no early stopping or adaptive width at last layer
if do_early_stop:
token0, token1 = self.token_confidence[i](desc0, desc1)
if self.check_if_stop(token0[..., :m], token1[..., :n], i, m + n):
break
if do_point_pruning and desc0.shape[-2] > pruning_th:
scores0 = self.log_assignment[i].get_matchability(desc0)
prunemask0 = self.get_pruning_mask(token0, scores0, i)
keep0 = torch.where(prunemask0)[1]
ind0 = ind0.index_select(1, keep0)
desc0 = desc0.index_select(1, keep0)
encoding0 = encoding0.index_select(-2, keep0)
prune0[:, ind0] += 1
if do_point_pruning and desc1.shape[-2] > pruning_th:
scores1 = self.log_assignment[i].get_matchability(desc1)
prunemask1 = self.get_pruning_mask(token1, scores1, i)
keep1 = torch.where(prunemask1)[1]
ind1 = ind1.index_select(1, keep1)
desc1 = desc1.index_select(1, keep1)
encoding1 = encoding1.index_select(-2, keep1)
prune1[:, ind1] += 1
if desc0.shape[1] == 0 or desc1.shape[1] == 0: # no keypoints
m0 = desc0.new_full((b, m), -1, dtype=torch.long)
m1 = desc1.new_full((b, n), -1, dtype=torch.long)
mscores0 = desc0.new_zeros((b, m))
mscores1 = desc1.new_zeros((b, n))
matches = desc0.new_empty((b, 0, 2), dtype=torch.long)
mscores = desc0.new_empty((b, 0))
if not do_point_pruning:
prune0 = torch.ones_like(mscores0) * self.conf.n_layers
prune1 = torch.ones_like(mscores1) * self.conf.n_layers
return {
"matches0": m0,
"matches1": m1,
"matching_scores0": mscores0,
"matching_scores1": mscores1,
"stop": i + 1,
"matches": matches,
"scores": mscores,
"prune0": prune0,
"prune1": prune1,
}
desc0, desc1 = desc0[..., :m, :], desc1[..., :n, :] # remove padding
scores, _ = self.log_assignment[i](desc0, desc1)
m0, m1, mscores0, mscores1 = filter_matches(scores, self.conf.filter_threshold)
matches, mscores = [], []
for k in range(b):
valid = m0[k] > -1
m_indices_0 = torch.where(valid)[0]
m_indices_1 = m0[k][valid]
if do_point_pruning:
m_indices_0 = ind0[k, m_indices_0]
m_indices_1 = ind1[k, m_indices_1]
matches.append(torch.stack([m_indices_0, m_indices_1], -1))
mscores.append(mscores0[k][valid])
# TODO: Remove when hloc switches to the compact format.
if do_point_pruning:
m0_ = torch.full((b, m), -1, device=m0.device, dtype=m0.dtype)
m1_ = torch.full((b, n), -1, device=m1.device, dtype=m1.dtype)
m0_[:, ind0] = torch.where(m0 == -1, -1, ind1.gather(1, m0.clamp(min=0)))
m1_[:, ind1] = torch.where(m1 == -1, -1, ind0.gather(1, m1.clamp(min=0)))
mscores0_ = torch.zeros((b, m), device=mscores0.device)
mscores1_ = torch.zeros((b, n), device=mscores1.device)
mscores0_[:, ind0] = mscores0
mscores1_[:, ind1] = mscores1
m0, m1, mscores0, mscores1 = m0_, m1_, mscores0_, mscores1_
else:
prune0 = torch.ones_like(mscores0) * self.conf.n_layers
prune1 = torch.ones_like(mscores1) * self.conf.n_layers
return {
"matches0": m0,
"matches1": m1,
"matching_scores0": mscores0,
"matching_scores1": mscores1,
"stop": i + 1,
"matches": matches,
"scores": mscores,
"prune0": prune0,
"prune1": prune1,
}
def confidence_threshold(self, layer_index: int) -> float:
"""scaled confidence threshold"""
threshold = 0.8 + 0.1 * np.exp(-4.0 * layer_index / self.conf.n_layers)
return np.clip(threshold, 0, 1)
def get_pruning_mask(
self, confidences: torch.Tensor, scores: torch.Tensor, layer_index: int
) -> torch.Tensor:
"""mask points which should be removed"""
keep = scores > (1 - self.conf.width_confidence)
if confidences is not None: # Low-confidence points are never pruned.
keep |= confidences <= self.confidence_thresholds[layer_index]
return keep
def check_if_stop(
self,
confidences0: torch.Tensor,
confidences1: torch.Tensor,
layer_index: int,
num_points: int,
) -> torch.Tensor:
"""evaluate stopping condition"""
confidences = torch.cat([confidences0, confidences1], -1)
threshold = self.confidence_thresholds[layer_index]
ratio_confident = 1.0 - (confidences < threshold).float().sum() / num_points
return ratio_confident > self.conf.depth_confidence
def pruning_min_kpts(self, device: torch.device):
if self.conf.flash and FLASH_AVAILABLE and device.type == "cuda":
return self.pruning_keypoint_thresholds["flash"]
else:
return self.pruning_keypoint_thresholds[device.type]