lsxi77777's picture
commit message
a930e1f
import os.path as osp
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
from loguru import logger
from src.utils.dataset import read_vistir_gray
class VisTirDataset(Dataset):
def __init__(self,
root_dir,
npz_path,
mode='val',
img_resize=None,
df=None,
img_padding=False,
**kwargs):
"""
Manage one scene(npz_path) of VisTir dataset.
Args:
root_dir (str): VisTIR root directory.
npz_path (str): {scene_id}.npz path. This contains image pair information of a scene.
mode (str): options are ['val', 'test']
img_resize (int, optional): the longer edge of resized images. None for no resize. 640 is recommended.
df (int, optional): image size division factor. NOTE: this will change the final image size after img_resize.
img_padding (bool): If set to 'True', zero-pad the image to squared size.
"""
super().__init__()
self.root_dir = root_dir
self.mode = mode
self.scene_id = npz_path.split('.')[0]
# prepare scene_info and pair_info
self.scene_info = dict(np.load(npz_path, allow_pickle=True))
self.pair_infos = self.scene_info['pair_infos'].copy()
del self.scene_info['pair_infos']
# parameters for image resizing, padding
self.img_resize = img_resize
self.df = df
self.img_padding = img_padding
# for training XoFTR
self.coarse_scale = getattr(kwargs, 'coarse_scale', 0.125)
def __len__(self):
return len(self.pair_infos)
def __getitem__(self, idx):
(idx0, idx1) = self.pair_infos[idx]
img_name0 = osp.join(self.root_dir, self.scene_info['image_paths'][idx0][0])
img_name1 = osp.join(self.root_dir, self.scene_info['image_paths'][idx1][1])
# read intrinsics of original size
K_0 = np.array(self.scene_info['intrinsics'][idx0][0], dtype=float).reshape(3,3)
K_1 = np.array(self.scene_info['intrinsics'][idx1][1], dtype=float).reshape(3,3)
# read distortion coefficients
dist0 = np.array(self.scene_info['distortion_coefs'][idx0][0], dtype=float)
dist1 = np.array(self.scene_info['distortion_coefs'][idx1][1], dtype=float)
# read grayscale undistorted image and mask. (1, h, w) and (h, w)
image0, mask0, scale0, K_0 = read_vistir_gray(
img_name0, K_0, dist0, self.img_resize, self.df, self.img_padding, augment_fn=None)
image1, mask1, scale1, K_1 = read_vistir_gray(
img_name1, K_1, dist1, self.img_resize, self.df, self.img_padding, augment_fn=None)
# to tensor
K_0 = torch.tensor(K_0.copy(), dtype=torch.float).reshape(3, 3)
K_1 = torch.tensor(K_1.copy(), dtype=torch.float).reshape(3, 3)
# read and compute relative poses
T0 = self.scene_info['poses'][idx0]
T1 = self.scene_info['poses'][idx1]
T_0to1 = torch.tensor(np.matmul(T1, np.linalg.inv(T0)), dtype=torch.float)[:4, :4] # (4, 4)
T_1to0 = T_0to1.inverse()
data = {
'image0': image0, # (1, h, w)
'image1': image1,
'T_0to1': T_0to1, # (4, 4)
'T_1to0': T_1to0,
'K0': K_0, # (3, 3)
'K1': K_1,
'dist0': dist0,
'dist1': dist1,
'scale0': scale0, # [scale_w, scale_h]
'scale1': scale1,
'dataset_name': 'VisTir',
'scene_id': self.scene_id,
'pair_id': idx,
'pair_names': (self.scene_info['image_paths'][idx0][0], self.scene_info['image_paths'][idx1][1]),
}
# for XoFTR training
if mask0 is not None: # img_padding is True
if self.coarse_scale:
[ts_mask_0, ts_mask_1] = F.interpolate(torch.stack([mask0, mask1], dim=0)[None].float(),
scale_factor=self.coarse_scale,
mode='nearest',
recompute_scale_factor=False)[0].bool()
data.update({'mask0': ts_mask_0, 'mask1': ts_mask_1})
return data