Spaces:
Running
on
Zero
Running
on
Zero
from collections import defaultdict | |
import pprint | |
from loguru import logger | |
from pathlib import Path | |
import torch | |
import numpy as np | |
import pytorch_lightning as pl | |
from matplotlib import pyplot as plt | |
plt.switch_backend('agg') | |
from src.xoftr import XoFTR | |
from src.xoftr.utils.supervision import compute_supervision_coarse, compute_supervision_fine | |
from src.losses.xoftr_loss import XoFTRLoss | |
from src.optimizers import build_optimizer, build_scheduler | |
from src.utils.metrics import ( | |
compute_symmetrical_epipolar_errors, | |
compute_pose_errors, | |
aggregate_metrics | |
) | |
from src.utils.plotting import make_matching_figures | |
from src.utils.comm import gather, all_gather | |
from src.utils.misc import lower_config, flattenList | |
from src.utils.profiler import PassThroughProfiler | |
class PL_XoFTR(pl.LightningModule): | |
def __init__(self, config, pretrained_ckpt=None, profiler=None, dump_dir=None): | |
""" | |
TODO: | |
- use the new version of PL logging API. | |
""" | |
super().__init__() | |
# Misc | |
self.config = config # full config | |
_config = lower_config(self.config) | |
self.xoftr_cfg = lower_config(_config['xoftr']) | |
self.profiler = profiler or PassThroughProfiler() | |
self.n_vals_plot = max(config.TRAINER.N_VAL_PAIRS_TO_PLOT // config.TRAINER.WORLD_SIZE, 1) | |
# Matcher: XoFTR | |
self.matcher = XoFTR(config=_config['xoftr']) | |
self.loss = XoFTRLoss(_config) | |
# Pretrained weights | |
if pretrained_ckpt: | |
state_dict = torch.load(pretrained_ckpt, map_location='cpu')['state_dict'] | |
self.matcher.load_state_dict(state_dict, strict=False) | |
logger.info(f"Load \'{pretrained_ckpt}\' as pretrained checkpoint") | |
for name, param in self.matcher.named_parameters(): | |
if name in state_dict.keys(): | |
print("in ckpt: ", name) | |
else: | |
print("out ckpt: ", name) | |
# Testing | |
self.dump_dir = dump_dir | |
def configure_optimizers(self): | |
# FIXME: The scheduler did not work properly when `--resume_from_checkpoint` | |
optimizer = build_optimizer(self, self.config) | |
scheduler = build_scheduler(self.config, optimizer) | |
return [optimizer], [scheduler] | |
def optimizer_step( | |
self, epoch, batch_idx, optimizer, optimizer_idx, | |
optimizer_closure, on_tpu, using_native_amp, using_lbfgs): | |
# learning rate warm up | |
warmup_step = self.config.TRAINER.WARMUP_STEP | |
if self.trainer.global_step < warmup_step: | |
if self.config.TRAINER.WARMUP_TYPE == 'linear': | |
base_lr = self.config.TRAINER.WARMUP_RATIO * self.config.TRAINER.TRUE_LR | |
lr = base_lr + \ | |
(self.trainer.global_step / self.config.TRAINER.WARMUP_STEP) * \ | |
abs(self.config.TRAINER.TRUE_LR - base_lr) | |
for pg in optimizer.param_groups: | |
pg['lr'] = lr | |
elif self.config.TRAINER.WARMUP_TYPE == 'constant': | |
pass | |
else: | |
raise ValueError(f'Unknown lr warm-up strategy: {self.config.TRAINER.WARMUP_TYPE}') | |
# update params | |
optimizer.step(closure=optimizer_closure) | |
optimizer.zero_grad() | |
def _trainval_inference(self, batch): | |
with self.profiler.profile("Compute coarse supervision"): | |
compute_supervision_coarse(batch, self.config) | |
with self.profiler.profile("XoFTR"): | |
self.matcher(batch) | |
with self.profiler.profile("Compute fine supervision"): | |
compute_supervision_fine(batch, self.config) | |
with self.profiler.profile("Compute losses"): | |
self.loss(batch) | |
def _compute_metrics(self, batch): | |
with self.profiler.profile("Copmute metrics"): | |
compute_symmetrical_epipolar_errors(batch) # compute epi_errs for each match | |
compute_pose_errors(batch, self.config) # compute R_errs, t_errs, pose_errs for each pair | |
rel_pair_names = list(zip(*batch['pair_names'])) | |
bs = batch['image0'].size(0) | |
metrics = { | |
# to filter duplicate pairs caused by DistributedSampler | |
'identifiers': ['#'.join(rel_pair_names[b]) for b in range(bs)], | |
'epi_errs': [batch['epi_errs'][batch['m_bids'] == b].cpu().numpy() for b in range(bs)], | |
'R_errs': batch['R_errs'], | |
't_errs': batch['t_errs'], | |
'inliers': batch['inliers']} | |
if self.config.DATASET.VAL_DATA_SOURCE == "VisTir": | |
metrics.update({'scene_id': batch['scene_id']}) | |
ret_dict = {'metrics': metrics} | |
return ret_dict, rel_pair_names | |
def training_step(self, batch, batch_idx): | |
self._trainval_inference(batch) | |
# logging | |
if self.trainer.global_rank == 0 and self.global_step % self.trainer.log_every_n_steps == 0: | |
# scalars | |
for k, v in batch['loss_scalars'].items(): | |
self.logger[0].experiment.add_scalar(f'train/{k}', v, self.global_step) | |
if self.config.TRAINER.USE_WANDB: | |
self.logger[1].log_metrics({f'train/{k}': v}, self.global_step) | |
# figures | |
if self.config.TRAINER.ENABLE_PLOTTING: | |
compute_symmetrical_epipolar_errors(batch) # compute epi_errs for each match | |
figures = make_matching_figures(batch, self.config, self.config.TRAINER.PLOT_MODE) | |
for k, v in figures.items(): | |
self.logger[0].experiment.add_figure(f'train_match/{k}', v, self.global_step) | |
return {'loss': batch['loss']} | |
def training_epoch_end(self, outputs): | |
avg_loss = torch.stack([x['loss'] for x in outputs]).mean() | |
if self.trainer.global_rank == 0: | |
self.logger[0].experiment.add_scalar( | |
'train/avg_loss_on_epoch', avg_loss, | |
global_step=self.current_epoch) | |
if self.config.TRAINER.USE_WANDB: | |
self.logger[1].log_metrics( | |
{'train/avg_loss_on_epoch': avg_loss}, | |
self.current_epoch) | |
def validation_step(self, batch, batch_idx): | |
# no loss calculation for VisTir during val | |
if self.config.DATASET.VAL_DATA_SOURCE == "VisTir": | |
with self.profiler.profile("XoFTR"): | |
self.matcher(batch) | |
else: | |
self._trainval_inference(batch) | |
ret_dict, _ = self._compute_metrics(batch) | |
val_plot_interval = max(self.trainer.num_val_batches[0] // self.n_vals_plot, 1) | |
figures = {self.config.TRAINER.PLOT_MODE: []} | |
if batch_idx % val_plot_interval == 0: | |
figures = make_matching_figures(batch, self.config, mode=self.config.TRAINER.PLOT_MODE, ret_dict=ret_dict) | |
if self.config.DATASET.VAL_DATA_SOURCE == "VisTir": | |
return { | |
**ret_dict, | |
'figures': figures, | |
} | |
else: | |
return { | |
**ret_dict, | |
'loss_scalars': batch['loss_scalars'], | |
'figures': figures, | |
} | |
def validation_epoch_end(self, outputs): | |
# handle multiple validation sets | |
multi_outputs = [outputs] if not isinstance(outputs[0], (list, tuple)) else outputs | |
multi_val_metrics = defaultdict(list) | |
for valset_idx, outputs in enumerate(multi_outputs): | |
# since pl performs sanity_check at the very begining of the training | |
cur_epoch = self.trainer.current_epoch | |
if not self.trainer.resume_from_checkpoint and self.trainer.running_sanity_check: | |
cur_epoch = -1 | |
if self.config.DATASET.VAL_DATA_SOURCE == "VisTir": | |
metrics_per_scene = {} | |
for o in outputs: | |
if not o['metrics']['scene_id'][0] in metrics_per_scene.keys(): | |
metrics_per_scene[o['metrics']['scene_id'][0]] = [] | |
metrics_per_scene[o['metrics']['scene_id'][0]].append(o['metrics']) | |
aucs_per_scene = {} | |
for scene_id in metrics_per_scene.keys(): | |
# 2. val metrics: dict of list, numpy | |
_metrics = metrics_per_scene[scene_id] | |
metrics = {k: flattenList(all_gather(flattenList([_me[k] for _me in _metrics]))) for k in _metrics[0]} | |
# NOTE: all ranks need to `aggregate_merics`, but only log at rank-0 | |
val_metrics = aggregate_metrics(metrics, self.config.TRAINER.EPI_ERR_THR) | |
aucs_per_scene[scene_id] = val_metrics | |
# average the metrics of scenes | |
# since the number of images in each scene is different | |
val_metrics_4tb = {} | |
for thr in [5, 10, 20]: | |
temp = [] | |
for scene_id in metrics_per_scene.keys(): | |
temp.append(aucs_per_scene[scene_id][f'auc@{thr}']) | |
val_metrics_4tb[f'auc@{thr}'] = float(np.array(temp, dtype=float).mean()) | |
temp = [] | |
for scene_id in metrics_per_scene.keys(): | |
temp.append(aucs_per_scene[scene_id][f'prec@{self.config.TRAINER.EPI_ERR_THR:.0e}']) | |
val_metrics_4tb[f'prec@{self.config.TRAINER.EPI_ERR_THR:.0e}'] = float(np.array(temp, dtype=float).mean()) | |
else: | |
# 1. loss_scalars: dict of list, on cpu | |
_loss_scalars = [o['loss_scalars'] for o in outputs] | |
loss_scalars = {k: flattenList(all_gather([_ls[k] for _ls in _loss_scalars])) for k in _loss_scalars[0]} | |
# 2. val metrics: dict of list, numpy | |
_metrics = [o['metrics'] for o in outputs] | |
metrics = {k: flattenList(all_gather(flattenList([_me[k] for _me in _metrics]))) for k in _metrics[0]} | |
# NOTE: all ranks need to `aggregate_merics`, but only log at rank-0 | |
val_metrics_4tb = aggregate_metrics(metrics, self.config.TRAINER.EPI_ERR_THR) | |
for thr in [5, 10, 20]: | |
multi_val_metrics[f'auc@{thr}'].append(val_metrics_4tb[f'auc@{thr}']) | |
# 3. figures | |
_figures = [o['figures'] for o in outputs] | |
figures = {k: flattenList(gather(flattenList([_me[k] for _me in _figures]))) for k in _figures[0]} | |
# tensorboard records only on rank 0 | |
if self.trainer.global_rank == 0: | |
if self.config.DATASET.VAL_DATA_SOURCE != "VisTir": | |
for k, v in loss_scalars.items(): | |
mean_v = torch.stack(v).mean() | |
self.logger.experiment.add_scalar(f'val_{valset_idx}/avg_{k}', mean_v, global_step=cur_epoch) | |
for k, v in val_metrics_4tb.items(): | |
self.logger[0].experiment.add_scalar(f"metrics_{valset_idx}/{k}", v, global_step=cur_epoch) | |
if self.config.TRAINER.USE_WANDB: | |
self.logger[1].log_metrics({f"metrics_{valset_idx}/{k}": v}, cur_epoch) | |
for k, v in figures.items(): | |
if self.trainer.global_rank == 0: | |
for plot_idx, fig in enumerate(v): | |
self.logger[0].experiment.add_figure( | |
f'val_match_{valset_idx}/{k}/pair-{plot_idx}', fig, cur_epoch, close=True) | |
plt.close('all') | |
for thr in [5, 10, 20]: | |
# log on all ranks for ModelCheckpoint callback to work properly | |
self.log(f'auc@{thr}', torch.tensor(np.mean(multi_val_metrics[f'auc@{thr}']))) # ckpt monitors on this | |
def test_step(self, batch, batch_idx): | |
with self.profiler.profile("XoFTR"): | |
self.matcher(batch) | |
ret_dict, rel_pair_names = self._compute_metrics(batch) | |
with self.profiler.profile("dump_results"): | |
if self.dump_dir is not None: | |
# dump results for further analysis | |
keys_to_save = {'mkpts0_f', 'mkpts1_f', 'mconf_f', 'epi_errs'} | |
pair_names = list(zip(*batch['pair_names'])) | |
bs = batch['image0'].shape[0] | |
dumps = [] | |
for b_id in range(bs): | |
item = {} | |
mask = batch['m_bids'] == b_id | |
item['pair_names'] = pair_names[b_id] | |
item['identifier'] = '#'.join(rel_pair_names[b_id]) | |
if self.config.DATASET.TEST_DATA_SOURCE == "VisTir": | |
item['scene_id'] = batch['scene_id'] | |
item['K0'] = batch['K0'][b_id].cpu().numpy() | |
item['K1'] = batch['K1'][b_id].cpu().numpy() | |
item['dist0'] = batch['dist0'][b_id].cpu().numpy() | |
item['dist1'] = batch['dist1'][b_id].cpu().numpy() | |
for key in keys_to_save: | |
item[key] = batch[key][mask].cpu().numpy() | |
for key in ['R_errs', 't_errs', 'inliers']: | |
item[key] = batch[key][b_id] | |
dumps.append(item) | |
ret_dict['dumps'] = dumps | |
return ret_dict | |
def test_epoch_end(self, outputs): | |
if self.config.DATASET.TEST_DATA_SOURCE == "VisTir": | |
# metrics: dict of list, numpy | |
metrics_per_scene = {} | |
for o in outputs: | |
if not o['metrics']['scene_id'][0] in metrics_per_scene.keys(): | |
metrics_per_scene[o['metrics']['scene_id'][0]] = [] | |
metrics_per_scene[o['metrics']['scene_id'][0]].append(o['metrics']) | |
aucs_per_scene = {} | |
for scene_id in metrics_per_scene.keys(): | |
# 2. val metrics: dict of list, numpy | |
_metrics = metrics_per_scene[scene_id] | |
metrics = {k: flattenList(all_gather(flattenList([_me[k] for _me in _metrics]))) for k in _metrics[0]} | |
# NOTE: all ranks need to `aggregate_merics`, but only log at rank-0 | |
val_metrics = aggregate_metrics(metrics, self.config.TRAINER.EPI_ERR_THR) | |
aucs_per_scene[scene_id] = val_metrics | |
# average the metrics of scenes | |
# since the number of images in each scene is different | |
val_metrics_4tb = {} | |
for thr in [5, 10, 20]: | |
temp = [] | |
for scene_id in metrics_per_scene.keys(): | |
temp.append(aucs_per_scene[scene_id][f'auc@{thr}']) | |
val_metrics_4tb[f'auc@{thr}'] = np.array(temp, dtype=float).mean() | |
else: | |
# metrics: dict of list, numpy | |
_metrics = [o['metrics'] for o in outputs] | |
metrics = {k: flattenList(gather(flattenList([_me[k] for _me in _metrics]))) for k in _metrics[0]} | |
# [{key: [{...}, *#bs]}, *#batch] | |
if self.dump_dir is not None: | |
Path(self.dump_dir).mkdir(parents=True, exist_ok=True) | |
_dumps = flattenList([o['dumps'] for o in outputs]) # [{...}, #bs*#batch] | |
dumps = flattenList(gather(_dumps)) # [{...}, #proc*#bs*#batch] | |
logger.info(f'Prediction and evaluation results will be saved to: {self.dump_dir}') | |
if self.trainer.global_rank == 0: | |
print(self.profiler.summary()) | |
val_metrics_4tb = aggregate_metrics(metrics, self.config.TRAINER.EPI_ERR_THR) | |
logger.info('\n' + pprint.pformat(val_metrics_4tb)) | |
if self.dump_dir is not None: | |
np.save(Path(self.dump_dir) / 'XoFTR_pred_eval', dumps) |