Spaces:
Running
on
Zero
Running
on
Zero
from loguru import logger | |
import torch | |
import pytorch_lightning as pl | |
from matplotlib import pyplot as plt | |
plt.switch_backend('agg') | |
from src.xoftr import XoFTR_Pretrain | |
from src.losses.xoftr_loss_pretrain import XoFTRLossPretrain | |
from src.optimizers import build_optimizer, build_scheduler | |
from src.utils.plotting import make_mae_figures | |
from src.utils.comm import all_gather | |
from src.utils.misc import lower_config, flattenList | |
from src.utils.profiler import PassThroughProfiler | |
from src.utils.pretrain_utils import generate_random_masks, get_target | |
class PL_XoFTR_Pretrain(pl.LightningModule): | |
def __init__(self, config, pretrained_ckpt=None, profiler=None, dump_dir=None): | |
""" | |
TODO: | |
- use the new version of PL logging API. | |
""" | |
super().__init__() | |
# Misc | |
self.config = config # full config | |
_config = lower_config(self.config) | |
self.xoftr_cfg = lower_config(_config['xoftr']) | |
self.profiler = profiler or PassThroughProfiler() | |
self.n_vals_plot = max(config.TRAINER.N_VAL_PAIRS_TO_PLOT // config.TRAINER.WORLD_SIZE, 1) | |
# generator to create the same masks for validation | |
self.val_seed = self.config.PRETRAIN.VAL_SEED | |
self.val_generator = torch.Generator(device="cuda").manual_seed(self.val_seed) | |
self.mae_margins = config.PRETRAIN.MAE_MARGINS | |
# Matcher: XoFTR | |
self.matcher = XoFTR_Pretrain(config=_config['xoftr']) | |
self.loss = XoFTRLossPretrain(_config) | |
# Pretrained weights | |
if pretrained_ckpt: | |
state_dict = torch.load(pretrained_ckpt, map_location='cpu')['state_dict'] | |
self.matcher.load_state_dict(state_dict, strict=False) | |
logger.info(f"Load \'{pretrained_ckpt}\' as pretrained checkpoint") | |
# Testing | |
self.dump_dir = dump_dir | |
def configure_optimizers(self): | |
# FIXME: The scheduler did not work properly when `--resume_from_checkpoint` | |
optimizer = build_optimizer(self, self.config) | |
scheduler = build_scheduler(self.config, optimizer) | |
return [optimizer], [scheduler] | |
def optimizer_step( | |
self, epoch, batch_idx, optimizer, optimizer_idx, | |
optimizer_closure, on_tpu, using_native_amp, using_lbfgs): | |
# learning rate warm up | |
warmup_step = self.config.TRAINER.WARMUP_STEP | |
if self.trainer.global_step < warmup_step: | |
if self.config.TRAINER.WARMUP_TYPE == 'linear': | |
base_lr = self.config.TRAINER.WARMUP_RATIO * self.config.TRAINER.TRUE_LR | |
lr = base_lr + \ | |
(self.trainer.global_step / self.config.TRAINER.WARMUP_STEP) * \ | |
abs(self.config.TRAINER.TRUE_LR - base_lr) | |
for pg in optimizer.param_groups: | |
pg['lr'] = lr | |
elif self.config.TRAINER.WARMUP_TYPE == 'constant': | |
pass | |
else: | |
raise ValueError(f'Unknown lr warm-up strategy: {self.config.TRAINER.WARMUP_TYPE}') | |
# update params | |
optimizer.step(closure=optimizer_closure) | |
optimizer.zero_grad() | |
def _trainval_inference(self, batch, generator=None): | |
generate_random_masks(batch, | |
patch_size=self.config.PRETRAIN.PATCH_SIZE, | |
mask_ratio=self.config.PRETRAIN.MASK_RATIO, | |
generator=generator, | |
margins=self.mae_margins) | |
with self.profiler.profile("XoFTR"): | |
self.matcher(batch) | |
with self.profiler.profile("Compute losses"): | |
# Create target pacthes to reconstruct | |
get_target(batch) | |
self.loss(batch) | |
def training_step(self, batch, batch_idx): | |
self._trainval_inference(batch) | |
# logging | |
if self.trainer.global_rank == 0 and self.global_step % self.trainer.log_every_n_steps == 0: | |
# scalars | |
for k, v in batch['loss_scalars'].items(): | |
self.logger[0].experiment.add_scalar(f'train/{k}', v, self.global_step) | |
if self.config.TRAINER.USE_WANDB: | |
self.logger[1].log_metrics({f'train/{k}': v}, self.global_step) | |
if self.config.TRAINER.ENABLE_PLOTTING: | |
figures = make_mae_figures(batch) | |
for i, figure in enumerate(figures): | |
self.logger[0].experiment.add_figure( | |
f'train_mae/node_{self.trainer.global_rank}-device_{self.device.index}-batch_{i}', | |
figure, self.global_step) | |
return {'loss': batch['loss']} | |
def training_epoch_end(self, outputs): | |
avg_loss = torch.stack([x['loss'] for x in outputs]).mean() | |
if self.trainer.global_rank == 0: | |
self.logger[0].experiment.add_scalar( | |
'train/avg_loss_on_epoch', avg_loss, | |
global_step=self.current_epoch) | |
if self.config.TRAINER.USE_WANDB: | |
self.logger[1].log_metrics( | |
{'train/avg_loss_on_epoch': avg_loss}, | |
self.current_epoch) | |
def validation_step(self, batch, batch_idx): | |
self._trainval_inference(batch, self.val_generator) | |
val_plot_interval = max(self.trainer.num_val_batches[0] // \ | |
(self.trainer.num_gpus * self.n_vals_plot), 1) | |
figures = [] | |
if batch_idx % val_plot_interval == 0: | |
figures = make_mae_figures(batch) | |
return { | |
'loss_scalars': batch['loss_scalars'], | |
'figures': figures, | |
} | |
def validation_epoch_end(self, outputs): | |
self.val_generator.manual_seed(self.val_seed) | |
# handle multiple validation sets | |
multi_outputs = [outputs] if not isinstance(outputs[0], (list, tuple)) else outputs | |
for valset_idx, outputs in enumerate(multi_outputs): | |
# since pl performs sanity_check at the very begining of the training | |
cur_epoch = self.trainer.current_epoch | |
if not self.trainer.resume_from_checkpoint and self.trainer.running_sanity_check: | |
cur_epoch = -1 | |
# 1. loss_scalars: dict of list, on cpu | |
_loss_scalars = [o['loss_scalars'] for o in outputs] | |
loss_scalars = {k: flattenList(all_gather([_ls[k] for _ls in _loss_scalars])) for k in _loss_scalars[0]} | |
_figures = [o['figures'] for o in outputs] | |
figures = [item for sublist in _figures for item in sublist] | |
# tensorboard records only on rank 0 | |
if self.trainer.global_rank == 0: | |
for k, v in loss_scalars.items(): | |
mean_v = torch.stack(v).mean() | |
self.logger[0].experiment.add_scalar(f'val_{valset_idx}/avg_{k}', mean_v, global_step=cur_epoch) | |
if self.config.TRAINER.USE_WANDB: | |
self.logger[1].log_metrics({f'val_{valset_idx}/avg_{k}': mean_v}, cur_epoch) | |
for plot_idx, fig in enumerate(figures): | |
self.logger[0].experiment.add_figure( | |
f'val_mae_{valset_idx}/pair-{plot_idx}', fig, cur_epoch, close=True) | |
plt.close('all') | |