Spaces:
Running
on
Zero
Running
on
Zero
import albumentations as A | |
import numpy as np | |
import cv2 | |
class DarkAug(object): | |
""" | |
Extreme dark augmentation aiming at Aachen Day-Night | |
""" | |
def __init__(self): | |
self.augmentor = A.Compose([ | |
A.RandomBrightnessContrast(p=0.75, brightness_limit=(-0.6, 0.0), contrast_limit=(-0.5, 0.3)), | |
A.Blur(p=0.1, blur_limit=(3, 9)), | |
A.MotionBlur(p=0.2, blur_limit=(3, 25)), | |
A.RandomGamma(p=0.1, gamma_limit=(15, 65)), | |
A.HueSaturationValue(p=0.1, val_shift_limit=(-100, -40)) | |
], p=0.75) | |
def __call__(self, x): | |
return self.augmentor(image=x)['image'] | |
class MobileAug(object): | |
""" | |
Random augmentations aiming at images of mobile/handhold devices. | |
""" | |
def __init__(self): | |
self.augmentor = A.Compose([ | |
A.MotionBlur(p=0.25), | |
A.ColorJitter(p=0.5), | |
A.RandomRain(p=0.1), # random occlusion | |
A.RandomSunFlare(p=0.1), | |
A.JpegCompression(p=0.25), | |
A.ISONoise(p=0.25) | |
], p=1.0) | |
def __call__(self, x): | |
return self.augmentor(image=x)['image'] | |
class RGBThermalAug(object): | |
""" | |
Pseudo-thermal image augmentation | |
""" | |
def __init__(self): | |
self.blur = A.Blur(p=0.7, blur_limit=(2, 4)) | |
self.hsv = A.HueSaturationValue(p=0.9, val_shift_limit=(-30, +30), hue_shift_limit=(-90,+90), sat_shift_limit=(-30,+30)) | |
# Switch images to apply augmentation | |
self.random_switch = True | |
# parameters for the cosine transform | |
self.w_0 = np.pi * 2 / 3 | |
self.w_r = np.pi / 2 | |
self.theta_r = np.pi / 2 | |
def augment_pseudo_thermal(self, image): | |
# HSV augmentation | |
image = self.hsv(image=image)["image"] | |
# Random blur | |
image = self.blur(image=image)["image"] | |
# Convert the image to the gray scale | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
# Normalize the image between (-0.5, 0.5) | |
image = image / 255 - 0.5 # 8 bit color | |
# Random phase and freq for the cosine transform | |
phase = np.pi / 2 + np.random.randn(1) * self.theta_r | |
w = self.w_0 + np.abs(np.random.randn(1)) * self.w_r | |
# Cosine transform | |
image = np.cos(image * w + phase) | |
# Min-max normalization for the transformed image | |
image = (image - image.min()) / (image.max() - image.min()) * 255 | |
# 3 channel gray | |
image = cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_GRAY2RGB) | |
return image | |
def __call__(self, x, image_num): | |
if image_num==0: | |
# augmentation for RGB image can be added here | |
return x | |
elif image_num==1: | |
# pseudo-thermal augmentation | |
return self.augment_pseudo_thermal(x) | |
else: | |
raise ValueError(f'Invalid image number: {image_num}') | |
def build_augmentor(method=None, **kwargs): | |
if method == 'dark': | |
return DarkAug() | |
elif method == 'mobile': | |
return MobileAug() | |
elif method == "rgb_thermal": | |
return RGBThermalAug() | |
elif method is None: | |
return None | |
else: | |
raise ValueError(f'Invalid augmentation method: {method}') | |
if __name__ == '__main__': | |
augmentor = build_augmentor('FDA') |