Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
import torch | |
import torch.nn as nn | |
from .linear_attention import LinearAttention, FullAttention | |
class LoFTREncoderLayer(nn.Module): | |
def __init__(self, | |
d_model, | |
nhead, | |
attention='linear'): | |
super(LoFTREncoderLayer, self).__init__() | |
self.dim = d_model // nhead | |
self.nhead = nhead | |
# multi-head attention | |
self.q_proj = nn.Linear(d_model, d_model, bias=False) | |
self.k_proj = nn.Linear(d_model, d_model, bias=False) | |
self.v_proj = nn.Linear(d_model, d_model, bias=False) | |
self.attention = LinearAttention() if attention == 'linear' else FullAttention() | |
self.merge = nn.Linear(d_model, d_model, bias=False) | |
# feed-forward network | |
self.mlp = nn.Sequential( | |
nn.Linear(d_model*2, d_model*2, bias=False), | |
nn.ReLU(True), | |
nn.Linear(d_model*2, d_model, bias=False), | |
) | |
# norm and dropout | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
def forward(self, x, source, x_mask=None, source_mask=None): | |
""" | |
Args: | |
x (torch.Tensor): [N, L, C] | |
source (torch.Tensor): [N, S, C] | |
x_mask (torch.Tensor): [N, L] (optional) | |
source_mask (torch.Tensor): [N, S] (optional) | |
""" | |
bs = x.size(0) | |
query, key, value = x, source, source | |
# multi-head attention | |
query = self.q_proj(query).view(bs, -1, self.nhead, self.dim) # [N, L, (H, D)] | |
key = self.k_proj(key).view(bs, -1, self.nhead, self.dim) # [N, S, (H, D)] | |
value = self.v_proj(value).view(bs, -1, self.nhead, self.dim) | |
message = self.attention(query, key, value, q_mask=x_mask, kv_mask=source_mask) # [N, L, (H, D)] | |
message = self.merge(message.view(bs, -1, self.nhead*self.dim)) # [N, L, C] | |
message = self.norm1(message) | |
# feed-forward network | |
message = self.mlp(torch.cat([x, message], dim=2)) | |
message = self.norm2(message) | |
return x + message | |
class LocalFeatureTransformer(nn.Module): | |
"""A Local Feature Transformer (LoFTR) module.""" | |
def __init__(self, config): | |
super(LocalFeatureTransformer, self).__init__() | |
self.config = config | |
self.d_model = config['d_model'] | |
self.nhead = config['nhead'] | |
self.layer_names = config['layer_names'] | |
encoder_layer = LoFTREncoderLayer(config['d_model'], config['nhead'], config['attention']) | |
self.layers = nn.ModuleList([copy.deepcopy(encoder_layer) for _ in range(len(self.layer_names))]) | |
self._reset_parameters() | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def forward(self, feat0, feat1, mask0=None, mask1=None): | |
""" | |
Args: | |
feat0 (torch.Tensor): [N, L, C] | |
feat1 (torch.Tensor): [N, S, C] | |
mask0 (torch.Tensor): [N, L] (optional) | |
mask1 (torch.Tensor): [N, S] (optional) | |
""" | |
assert self.d_model == feat0.size(2), "the feature number of src and transformer must be equal" | |
for layer, name in zip(self.layers, self.layer_names): | |
if name == 'self': | |
feat0 = layer(feat0, feat0, mask0, mask0) | |
feat1 = layer(feat1, feat1, mask1, mask1) | |
elif name == 'cross': | |
feat0 = layer(feat0, feat1, mask0, mask1) | |
feat1 = layer(feat1, feat0, mask1, mask0) | |
else: | |
raise KeyError | |
return feat0, feat1 |