import torch import torch.nn as nn from einops.einops import rearrange from .backbone import ResNet_8_2 from .utils.position_encoding import PositionEncodingSine from .xoftr_module import LocalFeatureTransformer, FineProcess, CoarseMatching, FineSubMatching class XoFTR(nn.Module): def __init__(self, config): super().__init__() # Misc self.config = config # Modules self.backbone = ResNet_8_2(config['resnet']) self.pos_encoding = PositionEncodingSine(config['coarse']['d_model']) self.loftr_coarse = LocalFeatureTransformer(config['coarse']) self.coarse_matching = CoarseMatching(config['match_coarse']) self.fine_process = FineProcess(config) self.fine_matching= FineSubMatching(config) def forward(self, data): """ Update: data (dict): { 'image0': (torch.Tensor): (N, 1, H, W) 'image1': (torch.Tensor): (N, 1, H, W) 'mask0'(optional) : (torch.Tensor): (N, H, W) '0' indicates a padded position 'mask1'(optional) : (torch.Tensor): (N, H, W) } """ # 1. Local Feature CNN data.update({ 'bs': data['image0'].size(0), 'hw0_i': data['image0'].shape[2:], 'hw1_i': data['image1'].shape[2:] }) eps = 1e-6 image0_mean = data['image0'].mean(dim=[2,3], keepdim=True) image0_std = data['image0'].std(dim=[2,3], keepdim=True) image0 = (data['image0'] - image0_mean) / (image0_std + eps) image1_mean = data['image1'].mean(dim=[2,3], keepdim=True) image1_std = data['image1'].std(dim=[2,3], keepdim=True) image1 = (data['image1'] - image1_mean) / (image1_std + eps) if data['hw0_i'] == data['hw1_i']: # faster & better BN convergence feats_c, feats_m, feats_f = self.backbone(torch.cat([image0, image1], dim=0)) (feat_c0, feat_c1) = feats_c.split(data['bs']) (feat_m0, feat_m1) = feats_m.split(data['bs']) (feat_f0, feat_f1) = feats_f.split(data['bs']) else: # handle different input shapes feat_c0, feat_m0, feat_f0 = self.backbone(image0) feat_c1, feat_m1, feat_f1 = self.backbone(image1) data.update({ 'hw0_c': feat_c0.shape[2:], 'hw1_c': feat_c1.shape[2:], 'hw0_m': feat_m0.shape[2:], 'hw1_m': feat_m1.shape[2:], 'hw0_f': feat_f0.shape[2:], 'hw1_f': feat_f1.shape[2:] }) # save coarse features for fine matching feat_c0_pre, feat_c1_pre = feat_c0.clone(), feat_c1.clone() # 2. coarse-level loftr module # add featmap with positional encoding, then flatten it to sequence [N, HW, C] feat_c0 = rearrange(self.pos_encoding(feat_c0), 'n c h w -> n (h w) c') feat_c1 = rearrange(self.pos_encoding(feat_c1), 'n c h w -> n (h w) c') mask_c0 = mask_c1 = None # mask is useful in training if 'mask0' in data: mask_c0, mask_c1 = data['mask0'].flatten(-2), data['mask1'].flatten(-2) feat_c0, feat_c1 = self.loftr_coarse(feat_c0, feat_c1, mask_c0, mask_c1) # 3. match coarse-level self.coarse_matching(feat_c0, feat_c1, data, mask_c0=mask_c0, mask_c1=mask_c1) # 4. fine-level matching module feat_f0_unfold, feat_f1_unfold = self.fine_process(feat_f0, feat_f1, feat_m0, feat_m1, feat_c0, feat_c1, feat_c0_pre, feat_c1_pre, data) # 5. match fine-level and sub-pixel refinement self.fine_matching(feat_f0_unfold, feat_f1_unfold, data) def load_state_dict(self, state_dict, *args, **kwargs): for k in list(state_dict.keys()): if k.startswith('matcher.'): state_dict[k.replace('matcher.', '', 1)] = state_dict.pop(k) return super().load_state_dict(state_dict, *args, **kwargs)