Spaces:
Sleeping
Sleeping
from transformers.configuration_utils import PretrainedConfig | |
class NorT5Config(PretrainedConfig): | |
"""Configuration class to store the configuration of a `NorT5`. | |
""" | |
def __init__( | |
self, | |
vocab_size=50000, | |
attention_probs_dropout_prob=0.1, | |
hidden_dropout_prob=0.1, | |
hidden_size=768, | |
intermediate_size=2048, | |
max_position_embeddings=512, | |
position_bucket_size=32, | |
num_attention_heads=12, | |
num_hidden_layers=12, | |
layer_norm_eps=1.0e-7, | |
output_all_encoded_layers=True, | |
pad_token_id=3, | |
cls_token_id=1, | |
sep_token_id=2, | |
bos_token_id=5, | |
eos_token_id=6, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.output_all_encoded_layers = output_all_encoded_layers | |
self.position_bucket_size = position_bucket_size | |
self.layer_norm_eps = layer_norm_eps | |
self.pad_token_id = pad_token_id | |
self.cls_token_id = cls_token_id | |
self.sep_token_id = sep_token_id | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |