File size: 52,586 Bytes
8044721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
# -*- coding: utf-8; -*-

# GraphaLogue Analyzer
# Marco Kuhlmann <[email protected]>
# Stephan Oepen <[email protected]>

from datetime import datetime;
import html;
import operator;
from pathlib import Path;
import sys;

import score.core;

#
# default values on edge attributes, which will be removed in normalization.
# because all constants are normalized to lowercase strings prior to testing
# for default values, we need to deal in the normalized values here.
#
ATTRIBUTE_DEFAULTS = {"remote": "false",
                      "effective": "false", "member": "false"};
FLAVORS = {"dm": 0, "psd": 0, "ptg": 0,
           "eds": 1, "ptg": 1, "ucca": 1,
           "amr": 2, "drg": 2};

class Node(object):

    def __init__(self, id, label = None, properties = None, values = None,
                 anchors = None, top = False, type = 1, anchorings = None):
        self.id = id
        self.type = type;
        self.label = label;
        self.properties = properties;
        self.values = values;
        self.anchorings = anchorings;
        self.incoming_edges = set()
        self.outgoing_edges = set()
        self.anchors = anchors;
        self.is_top = top

    def set_property(self, name, value):
        if self.properties and self.values:
            try:
                i = self.properties.index(name);
                self.values[i] = value;
            except ValueError:
                self.properties.append(name);
                self.values.append(value);
        else:
            self.properties = [name];
            self.values = [value];

    def set_anchoring(self, name, value):
        #
        # _fix_me_
        # this (currently only used in the AMR overlay) will not work in the
        # general case, where all three arrays should correspond in order.
        #                                                    (22-jun-20; oe)
        if self.properties and self.anchorings:
            try:
                i = self.properties.index(name);
                self.anchorings[i] = value;
            except ValueError:
                self.properties.append(name);
                self.anchorings.append(value);
        else:
            self.properties = [name];
            self.anchorings = [value];

    def add_anchor(self, anchor):
        if anchor is not None:
            if self.anchors is None: self.anchors = [anchor];
            elif anchor not in self.anchors: self.anchors.append(anchor);

    def is_root(self):
        return len(self.incoming_edges) == 0

    def is_leaf(self):
        return len(self.outgoing_edges) == 0

    def is_singleton(self):
        return self.is_root() and self.is_leaf() and not self.is_top

    def normalize(self, actions, input = None, trace = 0):
        def union(anchors):
            characters = set();
            for anchor in anchors:
                if "from" in anchor and "to" in anchor:
                    for i in range(anchor["from"], anchor["to"]):
                        characters.add(i);
            result = [];
            last = start = None;
            for i in sorted(characters):
                if start is None: start = i;
                if last is None:
                    last = i;
                    continue;
                elif i == last + 1 \
                     or all(c in score.core.SPACE for c in input[last:i]):
                    last = i;
                    continue;
                else:
                    result.append({"from": start, "to": last + 1});
                    last = start = i;
            if len(characters) > 0:
                result.append({"from": start, "to": i + 1});
            if anchors != result:
                old = [anchor for anchor in anchors if anchor not in result];
                new = [anchor for anchor in result if anchor not in anchors];
                print("{} ==> {} [{}]".format(old, new, input),
                      file = sys.stderr);
            return result;
        
        def trim(anchor, input):
            if "from" in anchor and "to" in anchor:
                i = max(anchor["from"], 0);
                j = min(anchor["to"], len(input));
                while i < j and input[i] in score.core.PUNCTUATION: i += 1;
                while j > i and input[j - 1] in score.core.PUNCTUATION: j -= 1;
                if trace and (i != anchor["from"] or j != anchor["to"]):
                    print("{} ({}) --> <{}:{}> ({})"
                          "".format(anchor,
                                    input[anchor["from"]:anchor["to"]],
                                    i, j, input[i:j]),
                          file = sys.stderr);
                anchor["from"] = i;
                anchor["to"] = j;

        if self.anchors is not None and "anchors" in actions:
            self.anchors = union(self.anchors);
            if self.anchors is not None and len(self.anchors) > 0 and input:
                for anchor in self.anchors: trim(anchor, input);
            elif isinstance(self.anchors, list) and len(self.anchors) == 0:
                self.anchors = None;

        if "case" in actions:
            if self.label is not None:
                self.label = str(self.label).lower();
            if self.properties and self.values:
                for i in range(len(self.properties)):
                    self.properties[i] = str(self.properties[i]).lower();
                    self.values[i] = str(self.values[i]).lower();

    def compare(self, node):
        #
        # keep track of node-local pieces of information that either occur in
        # both nodes (i.e. match), or only in the first or second of them.  in
        # guiding the MCES search, we (apparently) use the net gain of matching
        # pieces /minus/ those not matching on either side.  that does not lead
        # to monotonicity, in the sense of cumulative scores moving either up
        # or down as more node correspondences are fixed, but for guiding the
        # MCES search monotonicity fortunately is not a requirement either.
        #
        count1 = both = count2 = 0;
        if node is None:
            if self.is_top:
                count1 += 1;
            if self.label is not None:
                count1 += 1;
            if self.properties is not None:
                count1 += len(self.properties);
            return both - count1 - count2, count1, both, count2;
        if self.is_top:
            if node.is_top: both += 1;
            else: count1 += 1;
        else:
            if node.is_top: count2 += 1;
            else: both += 1;
        if self.label is not None:
            if self.label == node.label:
                both += 1;
            else:
                count1 += 1;
                if node.label is not None: count2 += 1;
        if self.properties is not None:
            if node.properties is None:
                count1 += len(self.properties);
            else:
                properties1 = {(property, self.values[i])
                               for i, property in enumerate(self.properties)};
                properties2 = {(property, node.values[i])
                               for i, property in enumerate(node.properties)};
                n = len(properties1 & properties2);
                count1 += len(properties1) - n;
                both += n;
                count2 += len(properties2) - n;
        elif node.properties is not None:
            count2 += len(node.properties);
        return both - count1 - count2, count1, both, count2;

    def encode(self):
        json = {"id": self.id};
        if self.label:
            json["label"] = self.label;
        if self.properties and self.values or self.anchorings:
            json["properties"] = self.properties;
            if self.values:
                json["values"] = self.values;
            if self.anchorings:
                json["anchorings"] = self.anchorings;
        if self.anchors:
            json["anchors"] = self.anchors;
        return json;

    @staticmethod
    def decode(json):
        id = json["id"]
        label = json.get("label", None)
        properties = json.get("properties", None)
        values = json.get("values", None)
        anchorings = json.get("anchorings", None)
        anchors = json.get("anchors", None)
        return Node(id=id, label=label, properties=properties, values=values, anchors=anchors, anchorings=anchorings)

    def dot(self, stream, input = None, ids = False, strings = False,
            errors = None, overlay = False):

        shapes = ["square", "oval", "diamond", "triangle"];

        if errors is not None and "correspondences" in errors:
            correspondences = {g: s for g, s in errors["correspondences"]};
        else:
            correspondences = None;
        missing = [None, [], [], None];
        surplus = [None, [], [], None];
        if errors is not None:
            if "labels" in errors and "missing" in errors["labels"]:
                for id, label in errors["labels"]["missing"]:
                    if id == self.id: missing[0] = label;
            if "properties" in errors and "missing" in errors["properties"]:
                for id, property, value in errors["properties"]["missing"]:
                    if id == self.id:
                        missing[1].append(property); missing[2].append(value);
            if "anchors" in errors and "missing" in errors["anchors"]:
                for id, anchor in errors["anchors"]["missing"]:
                    if id == self.id: missing[3] = anchor;
            if correspondences is not None and self.id in correspondences:
                key = correspondences[self.id];
                if "labels" in errors and "surplus" in errors["labels"]:
                    for id, label in errors["labels"]["surplus"]:
                        if id == key: surplus[0] = label;
                if "properties" in errors and "surplus" in errors["properties"]:
                    for id, property, value in errors["properties"]["surplus"]:
                        if id == key:
                            surplus[1].append(property); surplus[2].append(value);
                if "anchors" in errors and "surplus" in errors["anchors"]:
                    for id, anchor in errors["anchors"]["surplus"]:
                        if id == key: surplus[3] = anchor;

        if self.label \
           or ids and not overlay \
           or self.properties and self.values \
           or self.anchors \
           or missing[0] is not None or len(missing[1]) > 0 \
           or missing[3] is not None \
           or surplus[0] is not None or len(surplus[1]) > 0 \
           or surplus[3] is not None:

            if self.type in {0, 1, 2, 3}:
                shape = "shape={}, ".format(shapes[self.type]);
            else:
                shape = "";
            color = "color=blue, " if overlay else "";
            print("  {} [ {}{}label=<<table align=\"center\" border=\"0\" cellspacing=\"0\">"
                  "".format(self.id, shape, color), end = "", file = stream);

            if ids and not overlay:
                print("<tr><td colspan=\"2\">#{}</td></tr>"
                      "".format(self.id), end = "", file = stream);

            if self.label:
                if missing[0]: font = "<font color=\"red\">";
                elif overlay: font = "<font color=\"blue\">";
                else: font = "<font>";
                print("<tr><td colspan=\"2\">{}{}</font></td></tr>"
                      "".format(font, html.escape(self.label, False)),
                      end = "", file = stream);
            if surplus[0]:
                font = "<font color=\"blue\">";
                print("<tr><td colspan=\"2\">{}{}</font></td></tr>"
                      "".format(font, html.escape(surplus[0], False)),
                      end = "", file = stream);

            def __anchors__(anchors, color):
                print("<tr><td colspan=\"2\"><font color=\"{}\">{{"
                      "".format(color), end = "", file = stream);
                for index in anchors:
                    print("{}{}".format("&thinsp;" if index != anchors[0] else "", index),
                          end = "", file = stream);
                print("}</font></td></tr>", end = "", file = stream);
            if self.anchors is not None:
                if overlay:
                    __anchors__(self.anchors, "blue");
                else:
                    print("<tr><td colspan=\"2\">", end = "", file = stream);
                    for anchor in self.anchors:
                        if strings and input:
                            print("{}<font face=\"Courier\">{}</font>"
                                  "".format(",&nbsp;" if anchor != self.anchors[0] else "",
                                            html.escape(input[anchor["from"]:anchor["to"]])),
                                  end = "", file = stream);
                        else:
                            print("{}〈{}:{}〉"
                                  "".format("&thinsp;" if anchor != self.anchors[0] else "",
                                            anchor["from"], anchor["to"]),
                                  end = "", file = stream);
                    print("</td></tr>", end = "", file = stream);

            if missing[3]: __anchors__(missing[3], "red");
            if surplus[3]: __anchors__(surplus[3], "blue");

            def __properties__(names, values, color):
                font = "<font color=\"{}\">".format(color);
                for name, value in zip(names, values):
                    print("<tr><td sides=\"l\" border=\"1\" align=\"left\">{}{}</font>"
                          "</td><td sides=\"r\" border=\"1\" align=\"left\">{}{}</font></td></tr>"
                          "".format(font, html.escape(name, False),
                                    font, html.escape(value), False),
                          end = "", file = stream);
            if self.properties and self.values:
                if not overlay:
                    for name, value in zip(self.properties, self.values):
                        i = None;
                        try:
                            i = missing[1].index(name);
                        except:
                            pass;
                        if i is None or missing[2][i] != value:
                            __properties__([name], [value], "black");
                else:
                    __properties__(self.properties, self.values, "blue");
            if len(missing[1]) > 0: __properties__(missing[1], missing[2], "red");
            if len(surplus[1]) > 0: __properties__(surplus[1], surplus[2], "blue");

            print("</table>> ];", file = stream);
        elif overlay is None or self.id < 0:
            shape = "{}, label=\" \"".format(shapes[0]) if self.type == 0 else "point";
            print("  {} [ shape={}, width=0.2 ];"
                  "".format(self.id, shape), file = stream);

    def __key(self):
        return self.id

    def __eq__(self, other):
        return self.__key() == other.__key()

    def __lt__(self, other):
        return self.__key() < other.__key()

    def __hash__(self):
        return hash(self.__key())

class Edge(object):

    def __init__(self, id, src, tgt, lab, normal = None,
                 attributes = None, values = None, anchors = None):
        self.id = id;
        self.src = src;
        self.tgt = tgt;
        self.lab = lab;
        self.normal = normal;
        self.attributes = attributes;
        self.values = values;
        self.anchors = anchors;

    def is_loop(self):
        return self.src == self.tgt

    def min(self):
        return min(self.src, self.tgt)

    def max(self):
        return max(self.src, self.tgt)

    def endpoints(self):
        return self.min(), self.max()

    def length(self):
        return self.max() - self.min()

    def normalize(self, actions, trace = 0):
        if "edges" in actions:
            if self.normal is None \
                and self.lab is not None:
                label = self.lab;
                if label == "mod":
                    self.normal = "domain";
                elif label.endswith("-of-of") \
                     or label.endswith("-of") \
                     and label not in {"consist-of" "subset-of"} \
                     and not label.startswith("prep-"):
                    self.normal = label[:-3];
            if self.normal:
                target = self.src;
                self.src = self.tgt;
                self.tgt = target;
                self.lab = self.normal;
                self.normal = None;

        if "case" in actions:
            if self.lab is not None:
                self.lab = str(self.lab).lower();
            if self.normal is not None:
                self.normal = str(self.normal).lower();
            if self.attributes and self.values:
                for i in range(len(self.attributes)):
                    self.attributes[i] = str(self.attributes[i]).lower();
                    self.values[i] = str(self.values[i]).lower();

        if "attributes" in actions and self.attributes and self.values:
            #
            # drop (attribute, value) pairs whose value is the default value
            #
            attribute_value_pairs = [
                (attribute, value) for attribute, value
                in zip(self.attributes, self.values)
                if attribute not in ATTRIBUTE_DEFAULTS
                   or ATTRIBUTE_DEFAULTS[attribute] != value]
            self.attributes, self.values \
                = tuple(map(list, zip(*attribute_value_pairs))) or ([], [])

    def encode(self):
        json = {"id": self.id};
        if self.src is not None: json["source"] = self.src;
        if self.tgt is not None: json["target"] = self.tgt;
        if self.lab: json["label"] = self.lab;
        if self.normal: json["normal"] = self.normal;
        if self.attributes and self.values:
            json["attributes"] = self.attributes;
            json["values"] = self.values;
        if self.anchors: json["anchors"] = self.anchors;
        return json;

    @staticmethod
    def decode(json):
        id = json.get("id", None);
        src = json.get("source", None);
        tgt = json.get("target", None);
        lab = json.get("label", None);
        if lab == "": lab = None;
        normal = json.get("normal", None)
        attributes = json.get("attributes", None)
        if attributes is None:
            attributes = json.get("properties", None)
            if attributes is not None:
                print("Edge.decode(): "
                      "interpreting deprecated ‘properties’ on edge object.",
                      file = sys.stderr);
        values = json.get("values", None)
        anchors = json.get("anchors", None)
        return Edge(id, src, tgt, lab, normal, attributes, values, anchors)

    def dot(self, stream, input = None, strings = False,
            errors = None, overlay = False):
        def __missing__():
            if errors is not None and "edges" in errors \
               and "missing" in errors["edges"]:
                for source, target, label in errors["edges"]["missing"]:
                    if source == self.src and target == self.tgt and label == self.lab:
                        return True;
            return False;
        if self.attributes and self.values:
            style = ", style=dashed";
            label = "<<table align=\"center\" border=\"0\" cellspacing=\"0\">";
            if self.lab: label += "<tr><td colspan=\"1\">{}</td></tr>".format(self.lab);
            #
            # _fix_me_
            # currently assuming that all values are boolean where presence of
            # the attribute means True.                         (oe; 21-apr-20)
            #
            if self.attributes and self.values:
                for attribute, _ in zip(self.attributes, self.values):
                    label += "<tr><td>{}</td></tr>".format(attribute);
            label += "</table>>";
        else:
            label = self.lab;
            if label and self.normal:
                if label[:-3] == self.normal:
                    label = "(" + self.normal + ")-of";
                else:
                    label = label + " (" + self.normal + ")";
            if label: label = "\"{}\"".format(label);
            style = "";
        if overlay:
            color = ", color=blue, fontcolor=blue";
        elif __missing__():
            color = ", color=red, fontcolor=red";
        else:
            color = "";
        print("  {} -> {} [ label={}{}{} ];"
              "".format(self.src, self.tgt, label if label else "\"\"",
                        style, color),
              file = stream);

    def __key(self):
        return self.tgt, self.src, self.lab

    def __eq__(self, other):
        return self.__key() == other.__key()

    def __lt__(self, other):
        return self.__key() < other.__key()

    def __hash__(self):
        return hash(self.__key())

class Graph(object):

    def __init__(self, id, flavor = None, framework = None):
        self.id = id;
        self.time = datetime.utcnow();
        self._language = None;
        self._provenance = None;
        self._source = None;
        self._targets = None;
        self.input = None;
        self.nodes = [];
        self.edges = set();
        self.flavor = FLAVORS.get(framework) if flavor is None else flavor;
        self.framework = framework;

    def language(self, value = None):
        if value is not None: self._language = value;
        return self._language;

    def provenance(self, value = None):
        if value is not None: self._provenance = value;
        return self._provenance;

    def source(self, value = None):
        if value is not None: self._source = value;
        return self._source;

    def targets(self, value = None):
        if value is not None: self._targets = value;
        return self._targets;

    def size(self):
        return len(self.nodes);

    def inject(self, information):
        if isinstance(information, str): information = eval(information);
        for key, value in information.items():
            if key == "id": self.id = value;
            elif key == "time": self.item = value;
            elif key == "language": self._language = value;
            elif key == "provenance": self._provenance = value;
            elif key == "source": self._source = value;
            elif key == "targets": self._targets = value;
            elif key == "input": self.input = value;
            elif key == "flavor": self.flavor = value;
            elif key == "framework": self.framework = value;
            else:
                print("Graph.inject(): ignoring invalid key ‘{}’"
                      "".format(key), file = sys.stderr);

    def add_node(self, id = None, label = None,
                 properties = None, values = None,
                 anchors = None, top = False, type = 1, anchorings = None):
        node = Node(id if id is not None else len(self.nodes),
                    label = label, properties = properties, values = values,
                    anchors = anchors, top = top, type = type,
                    anchorings = anchorings);
        self.nodes.append(node)
        return node

    def find_node(self, id):
        for node in self.nodes:
            if node.id == id: return node;

    def add_edge(self, src, tgt, lab, normal = None,
                 attributes = None, values = None, anchors = None):
        self.store_edge(Edge(id=len(self.edges), src=src, tgt=tgt, lab=lab, normal=normal,
                             attributes=attributes, values=values, anchors=anchors));

    def store_edge(self, edge, robust = False):
        self.edges.add(edge)
        source = self.find_node(edge.src);
        if source is None and not robust:
            raise ValueError("Graph.add_edge(): graph #{}: "
                             "invalid source node {}."
                             "".format(self.id, self.src))
        if source: source.outgoing_edges.add(edge)
        target = self.find_node(edge.tgt);
        if target is None and not robust:
            raise ValueError("Graph.add_edge(): graph #{}: "
                             "invalid target node {}."
                             "".format(self.id, self.tgt))
        if target: target.incoming_edges.add(edge)
        return edge

    def add_input(self, text, id = None, quiet = False):
        if not id: id = self.id;
        if isinstance(text, str):
            self.input = text;
        elif isinstance(text, Path):
            file = text / (str(id) + ".txt");
            if not file.exists() and not quiet:
                print("add_input(): no text for {}.".format(file),
                      file = sys.stderr);
            else:
                with file.open() as stream:
                    input = stream.readline();
                    if input.endswith("\n"): input = input[:len(input) - 1];
                    self.input = input;
        else:
            input = text.get(id);
            if input:
                self.input = input;
            elif not quiet:
                print("add_input(): no text for key {}.".format(id),
                      file = sys.stderr);

    def anchor(self):
        n = len(self.input);
        i = 0;

        def skip():
            nonlocal i;
            while i < n and self.input[i] in {" ", "\t"}:
                i += 1;

        def scan(candidates):
            for candidate in candidates:
                if self.input.startswith(candidate, i):
                    return len(candidate);

        skip();
        for node in self.nodes:
            for j in range(len(node.anchors) if node.anchors else 0):
                if isinstance(node.anchors[j], str):
                    form = node.anchors[j];
                    m = None;
                    if self.input.startswith(form, i):
                        m = len(form);
                    else:
                        for old, new in {("‘", "`"), ("’", "'"), ("`", "'"),
                                         ("“", "\""), ("”", "\"")}:
                            form = form.replace(old, new);
                            if self.input.startswith(form, i):
                                m = len(form);
                                break;
                    #
                    # _fix_me_
                    # the block below looks weird: it would seem to accept any
                    # of the punctuation marks given to scan(), irrespective
                    # of the current .form. value?             (oe; 27-apr-20)
                    #
                    if not m:
                        m = scan({"“", "\"", "``"}) or scan({"‘", "`"}) \
                            or scan({"”", "\"", "''"}) or scan({"’", "'"}) \
                            or scan({"—", "—", "---", "--"}) \
                            or scan({"…", "...", ". . ."});
                    if m:
                        node.anchors[j] = {"from": i, "to": i + m};
                        i += m;
                        skip();
                    else:
                        raise Exception("failed to anchor |{}| in |{}| ({})"
                                        "".format(form, self.input, i));

    def normalize(self, actions, trace = 0):
        for node in self.nodes:
            node.normalize(actions, self.input, trace);
        for edge in self.edges:
            edge.normalize(actions, trace);
        #
        # recompute cached edge relations, to reflect the new state of affairs
        #
        if "edges" in actions:
            for node in self.nodes:
                node.outgoing_edges.clear();
                node.incoming_edges.clear();
            for edge in self.edges:
                self.find_node(edge.src).outgoing_edges.add(edge);
                self.find_node(edge.tgt).incoming_edges.add(edge);

    def prettify(self, trace = 0):
        if self.framework == "drg":
            boxes = {"IMP", "DIS", "DUP", "NOT", "POS", "NEC",
                     "ALTERNATION", "ATTRIBUTION", "BACKGROUND",
                     "COMMENTARY", "CONDITION", "CONTINUATION", "CONTRAST",
                     "CONSEQUENCE", "ELABORATION", "EXPLANATION", "INSTANCE",
                     "NARRATION", "NEGATION", "NECESSITY",
                     "POSSIBILITY", "PARALLEL", "PRECONDITION",
                     "RESULT", "TOPIC", "PRESUPPOSITION"};
            for node in self.nodes:
                if node.is_top or node.is_root():
                    node.type = 0;
                    #
                    # _fix_me_
                    # but what about more deeply nested boxes?  (24-aug-20; oe)
                    #
                    for edge in node.outgoing_edges:
                        if edge.lab in boxes:
                            self.find_node(edge.tgt).type = 0;
                elif len(node.incoming_edges) == len(node.outgoing_edges) == 1:
                    if next(iter(node.incoming_edges)).lab is None \
                       and next(iter(node.outgoing_edges)).lab is None:
                        node.type = 2;

    def score(self, graph, correspondences, errors = None):

        #
        # accommodate the various conventions for node correspondence matrices;
        # anyway, entries are indices into the .nodes. list, not identifiers.
        # _fix_me_
        # double-check for correspondences from SMATCH.         (oe; 19-apr-20)
        #
        if isinstance(correspondences, list) and len(correspondences) > 0:
            if isinstance(correspondences[0], tuple):
                correspondences = {i: j if j is not None else -1
                                   for i, j in correspondences};
            elif isinstance(correspondences[0], int):
                correspondences = {i: j if j is not None else -1
                                   for i, j in enumerate(correspondences)};

        #
        # all tuples use node identifiers from the gold graph, where there is
        # a correspondence; otherwise we (appear to) synthesize new unique
        # identifiers for remaining nodes from both graphs.
        #
        identities1 = dict();
        identities2 = dict();
        for i, pair in enumerate(correspondences.items()):
            identities1[self.nodes[pair[0]].id] = i;
            if pair[1] >= 0:
                identities2[graph.nodes[pair[1]].id] = i;
        i = len(correspondences);
        for node in self.nodes:
            if node.id not in identities1:
                identities1[node.id] = i;
                i += 1;
        for node in graph.nodes:
            if node.id not in identities2:
                identities2[node.id] = i;
                i += 1;

        #
        # map 'corresponding' identifiers back to the original graphs
        #
        def native(id, identities):
            for key, value in identities.items():
                if id == value: return key;

        def tuples(graph, identities):
            #
            # .identities. is a hash table mapping node identifiers into the
            # 'corresponding' identifier space, such that paired nodes (and
            # only these) share the same identifier.
            #
            def identify(id):
                return identities[id] if identities is not None else id;
            tops = set();
            labels = set();
            properties = set();
            anchors = set();
            edges = set();
            attributes = set();
            for node in graph.nodes:
                identity = identify(node.id);
                if node.is_top: tops.add(identity);
                if node.label is not None: labels.add((identity, node.label));
                if node.properties is not None:
                    for property, value in zip(node.properties, node.values):
                        properties.add((identity, property, value.lower()));
                if node.anchors is not None:
                    anchor = score.core.anchor(node);
                    if graph.input:
                        anchor = score.core.explode(graph.input, anchor);
                    else:
                        anchor = tuple(anchor);
                    anchors.add((identity, anchor));
            for edge in graph.edges:
                identity \
                    = (identify(edge.src), identify(edge.tgt), edge.lab);
                edges.add(identity);
                if edge.attributes and edge.values:
                    for attribute, value in zip(edge.attributes, edge.values):
                        attributes.add(tuple(list(identity) + [attribute, value]));
            return tops, labels, properties, anchors, edges, attributes;

        def count(gold, system, key):

            if errors is not None:
                missing = gold - system;
                surplus = system - gold;
                if len(missing) > 0 or len(surplus) > 0 and key not in errors:
                    errors[key] = dict();
                if key == "tops":
                    if missing:
                        errors[key]["missing"] \
                            = [native(id, identities1) for id in missing];
                    if surplus:
                        errors[key]["surplus"] \
                            = [native(id, identities2) for id in surplus];
                elif key == "labels":
                    if missing:
                        errors[key]["missing"] \
                            = [(native(id, identities1), label)
                               for id, label in missing];
                    if surplus:
                        errors[key]["surplus"] \
                            = [(native(id, identities2), label)
                               for id, label in surplus];
                elif key == "properties":
                    if missing:
                        errors[key]["missing"] \
                            = [(native(id, identities1), property, value)
                               for id, property,value in missing];
                    if surplus:
                        errors[key]["surplus"] \
                            = [(native(id, identities2), property, value)
                               for id, property, value in surplus];
                elif key == "anchors":
                    if missing:
                        errors[key]["missing"] \
                            = [(native(id, identities1), list(sorted(anchor)))
                               for id, anchor in missing];
                    if surplus:
                        errors[key]["surplus"] \
                            = [(native(id, identities2), list(sorted(anchor)))
                               for id, anchor in surplus];
                elif key == "edges":
                    if missing:
                        errors[key]["missing"] \
                            = [(native(source, identities1),
                                native(target, identities1), label)
                               for source, target, label in missing];
                    if surplus:
                        errors[key]["surplus"] \
                               = [(native(source, identities2),
                                   native(target, identities2), label)
                                  for source, target, label in surplus];
                elif key == "attributes":
                    if missing:
                        errors[key]["missing"] \
                            = [(native(source, identities1),
                                native(target, identities1), label,
                                attribute, value)
                               for source, target, label, attribute, value
                               in missing];
                    if surplus:
                        errors[key]["surplus"] \
                            = [(native(source, identities2),
                                native(target, identities2), label,
                                attribute, value)
                               for source, target, label, attribute, value
                               in surplus];
            return {"g": len(gold), "s": len(system), "c": len(gold & system)};

        if correspondences is None or len(correspondences) == 0:
            return count(set(), set()), count(set(), set()), \
                   count(set(), set()), count(set(), set()), \
                   count(set(), set()), count(set(), set());

        gtops, glabels, gproperties, ganchors, gedges, gattributes \
            = tuples(self, identities1);
        stops, slabels, sproperties, sanchors, sedges, sattributes \
            = tuples(graph, identities2);
        if errors is not None:
            errors[self.framework][self.id] = errors \
                = {"correspondences": [(self.nodes[g].id, graph.nodes[s].id)
                                       for g, s in correspondences.items()
                                       if s >= 0]}
        return count(gtops, stops, "tops"), \
            count(glabels, slabels, "labels"), \
            count(gproperties, sproperties, "properties"), \
            count(ganchors, sanchors, "anchors"), \
            count(gedges, sedges, "edges"), \
            count(gattributes, sattributes, "attributes");

    def encode(self, version = 1.1):
        json = {"id": self.id};
        if self.flavor is not None:
            json["flavor"] = self.flavor;
        if self.framework:
            json["framework"] = self.framework;
        json["version"] = version;
        if self.time is not None:
            json["time"] = self.time.strftime("%Y-%m-%d");
        else:
            json["time"] = datetime.now().strftime("%Y-%m-%d");
        if self._language is not None: json["language"] = self._language;
        if self._source is not None: json["source"] = self._source;
        if self._provenance is not None: json["provenance"] = self._provenance;
        if self._targets is not None: json["targets"] = self._targets;
        if self.input:
            json["input"] = self.input;
        if self.nodes:
            tops = [node.id for node in self.nodes if node.is_top];
            if len(tops):
                json["tops"] = tops;
            json["nodes"] = [node.encode() for node in self.nodes];
            if self.edges:
                json["edges"] = [edge.encode() for edge in
                                 sorted(self.edges, key = operator.attrgetter("id"))];
        return json;

    @staticmethod
    def decode(json, robust = False):
        graph = Graph(json["id"], json.get("flavor"), json.get("framework"))
        try:
            graph.time = datetime.strptime(json["time"], "%Y-%m-%d")
        except:
            graph.time = datetime.strptime(json["time"], "%Y-%m-%d (%H:%M)")
        graph.input = json.get("input")
        graph.language(json.get("language"))
        graph.source(json.get("source"))
        graph.provenance(json.get("provenance"))
        graph.targets(json.get("targets"))
        nodes = json.get("nodes")
        if nodes is not None:
            for j in nodes:
                node = Node.decode(j)
                graph.add_node(node.id, node.label, node.properties,
                               node.values, node.anchors, top = False, anchorings=node.anchorings)
        edges = json.get("edges")
        if edges is not None:
            for j in edges:
                edge = Edge.decode(j);
                if edge.id is None: edge.id = len(graph.edges);
                graph.store_edge(edge, robust = robust);
        tops = json.get("tops")
        if tops is not None:
            for i in tops:
                node = graph.find_node(i)
                if node is not None:
                    node.is_top = True
                else:
                    raise ValueError("Graph.decode(): graph #{}: "
                                     "invalid top node {}."
                                     "".format(graph.id, i))
        return graph

    def copy(self):
        return Graph.decode(self.encode())

    def dot(self, stream, ids = False, strings = False,
            errors = None, overlay = False):
        if not overlay:
            print("digraph \"{}\" {{\n  top [ style=invis ];"
                  "".format(self.id),
                  file = stream);
        for node in self.nodes:
            if node.is_top:
                if overlay:
                    color = " [ color=blue ]";
                elif errors is not None and "tops" in errors \
                     and "missing" in errors["tops"] and node.id in errors["tops"]["missing"]:
                    color = " [ color=red ]";
                else:
                    color = "";
                print("  top -> {}{};".format(node.id, color), file = stream);
        n = -1;
        for node in self.nodes:
            node.dot(stream, self.input, ids, strings, errors, overlay);
            for edge in self.edges:
                if node.id == edge.src:
                    edge.dot(stream, self.input, strings, errors, overlay);

        if errors is not None:
            surplus = Graph(self.id, flavor = self.flavor, framework = self.framework);
            surplus.add_input(self.input);
            mapping = dict();
            correspondences = {s: g for g, s in errors["correspondences"]};
            if "labels" in errors and "surplus" in errors["labels"]:
                for id, label in errors["labels"]["surplus"]:
                    if id not in correspondences:
                        mapping[id] = surplus.add_node(id = n, label = label);
                        n -= 1;
            if "properties" in errors and "surplus" in errors["properties"]:
                for id, property, value in errors["properties"]["surplus"]:
                    if id not in correspondences:
                        if id in mapping:
                            mapping[id].set_property(property, value);
                        else:
                            mapping[id] = surplus.add_node(id = n,
                                                           properties = [property],
                                                           values = [value]);
                            n -= 1;
            if "anchors" in errors and "surplus" in errors["anchors"]:
                for id, anchor in errors["anchors"]["surplus"]:
                    if id not in correspondences:
                        if id in mapping:
                            mapping[id].anchors = anchor;
                        else:
                            mapping[id] = surplus.add_node(id = n, anchors = anchor);
                            n -= 1;
            if "tops" in errors and "surplus" in errors["tops"]:
                for id in errors["tops"]["surplus"]:
                    if id in correspondences:
                        print("  top -> {} [ color=blue ];"
                              "".format(correspondences[id]), file = stream);

                    elif id not in mapping:
                        mapping[id] = surplus.add_node(id = n, top = True);
                        n -= 1;
                    else:
                        mapping[id].is_root = True;
            if "edges" in errors and "surplus" in errors["edges"]:
                for source, target, label in errors["edges"]["surplus"]:
                    if source not in mapping:
                        try:
                            mapping[source] = surplus.add_node(correspondences[source]);
                        except KeyError:
                            mapping[source] = surplus.add_node(n);
                            n -= 1;
                    if target not in mapping:
                        try:
                            mapping[target] = surplus.add_node(correspondences[target]);
                        except KeyError:
                            mapping[target] = surplus.add_node(n);
                            n -= 1;
                    surplus.add_edge(mapping[source].id, mapping[target].id, label);
            surplus.dot(stream, ids = ids, strings = strings, errors = None, overlay = True);
        if not overlay: print("}", file = stream);

    def tikz(self, stream):
        if self.flavor != 0:  # bi-lexical: use tikz-dependency
            raise ValueError("TikZ visualization is currently only for flavor-0 graphs.")
        graph = self._full_sentence_recovery()  # a copy of self with nodes covering all tokens
        print(r"\documentclass{article}", file=stream)
        print(r"\usepackage[T1]{fontenc}", file=stream)
        print(r"\usepackage[utf8]{inputenc}", file=stream)
        print(r"\usepackage{tikz-dependency}", file=stream)
        print(r"\begin{document}", file=stream)
        print(r"\begin{dependency}", file=stream)
        print(r"\begin{deptext}", file=stream)
        print(r"% id = " + str(graph.id), file=stream)
        if graph.input is not None:
            print(r"% input = " + str(graph.input), file=stream)
        sorted_nodes = sorted((node.id, node) for node in graph.nodes)
        id2i = {id: i for i, (id, _) in enumerate(sorted_nodes, start=1)}
        print(r" \& ".join(" ".join(graph.input[anchor["from"]:anchor["to"]] for anchor in node.anchors or ())
                           or node.label for _, node in sorted_nodes) + r" \\", file=stream)
        print(r"\end{deptext}", file=stream)
        for id, node in sorted_nodes:
            if node.is_top:
                print(r"\deproot{" + str(id2i[id]) + r"}{TOP}", file=stream)
            for edge in graph.edges:
                if node.id == edge.tgt:
                    print(r"\depedge{" + str(id2i[edge.src]) + r"}{" + str(id2i[id]) + r"}{" + str(edge.lab) + r"}", file=stream)
        print(r"\end{dependency}", file=stream)
        print(r"\end{document}", file=stream)


    def displacy(self, stream=None, format="svg", **kwargs):
        """
        Use displacy to present dependency graph over sentence.
        :param format: can be either "svg" or "html".
        kwargs are passed to displacy.render method, see https://spacy.io/usage/visualizers
        for possible options.
        One can omit the stream argument if specifying `jupyter=True` - this will render the visualization directly
        to the jupyter notebook.
        """
        assert stream or kwargs.get("jupyter"), "Either `stream` is given or `jupyter=True` must hold."
        assert format in ("svg", "html"), 'format can be either "svg" or "html"'
        try:
            from spacy import displacy
        except ModuleNotFoundError as e:
            print("You must install SpaCy in order to use the displacy visualization. \nTry running `pip install spacy`.")
            raise e
        if self.flavor != 0:  # currently supporting only bi-lexical graphs
            raise ValueError("displacy visualization is currently only for flavor-0 graphs.")

        graph = self._full_sentence_recovery() # a copy of self with nodes covering all tokens
        # prepare displacy_dep_input, composed of `words` list and `arcs` list
        words = [{"text": n.label, "tag": ""} for n in graph.nodes]

        def get_arc(edge: Edge):
            src, tgt = edge.src, edge.tgt
            direction = u'right' if src < tgt else u'left'
            return {'dir': direction,
                    'start': min(src, tgt),
                    'end': max(src, tgt),
                    'label': edge.lab}
        arcs = [get_arc(edge) for edge in graph.edges]
        displacy_dep_input = {'words': words, 'arcs': arcs}

        # render to stream as svg or html
        kwargs["page"] = format=="html"
        markdown = displacy.render(displacy_dep_input, style='dep', manual=True, **kwargs)
        # write svg text to a file
        if stream:
            stream.write(markdown)


    def _full_sentence_recovery(self):
        """
        graph nodes may sometimes only include non-singleton nodes, for example when taking the graph from
        a model prediction. For this reason, we need to use anchors and the input sentence in order to recover
        the original tokenization (thus node-ids and their corresponding text spans).
        Here, when necessary, we assume the original tokenization is encoded with spaces in self.input.
        But we mainly look for missing character segments (i.e. spans that are not included in anchors)
        and produce singleton nodes for them.
        The function returns a new Graph, in which recovered nodes are included and thus nodes correspond to
         input tokens.
        """
        graph = self.copy() # don't change
        length = len(graph.input)
        def rm_all(lst, items_to_remove):
            for item in items_to_remove:
                if item in lst:
                    lst.remove(item)
            return lst

        def group_consecutive(lst):
            # get list of integers, return list of lists, each the maximal consecutive (increasing) set from lst
            if not lst:
                return []
            groups = []
            cur_group=[lst[0]]
            for i,item in enumerate(lst[1:]):
                if item-1 == cur_group[-1]:
                    cur_group.append(item)
                else:
                    groups.append(cur_group)
                    cur_group = [item]
            groups.append(cur_group)
            return groups

        # iterate missing ids
        node_ids = [n.id for n in graph.nodes]
        id2node = {n.id : n for n in graph.nodes}
        max_id = max(node_ids)
        missing_ids = rm_all(list(range(max_id)), node_ids)
        missing_id_groups = group_consecutive(missing_ids)
        for id_group in missing_id_groups:
            # id_group is a list of consecutive missing ids
            if id_group[0]==0:
                begin_char = 0
            else:
                prev_id = id_group[0]-1 # the id of the existing node preceding the missing-id group
                prev_node = id2node[prev_id]
                begin_char = prev_node.anchors[0]['to']
            next_id = id_group[-1]+1
            if next_id in id2node:
                next_node = id2node[next_id]
                end_char = next_node.anchors[0]['from']
            else:
                end_char = length
            omitted_span = graph.input[begin_char:end_char]
            # we need to create len(id_group) new nodes for the omitted span.
            # Try to align singleton node (i.e. one id) to a token; if num of tokens in omitted_span
            # don't match num of missing ids, generate all these nodes with the same anchors to the whole span
            tokens = omitted_span.strip().split()
            if len(tokens) == len(id_group):
                for token, new_id in zip(tokens, id_group):
                    tok_begin_char = begin_char + omitted_span.find(token)
                    tok_end_char = tok_begin_char + len(token)
                    # add new node corresponding to omitted token
                    graph.add_node(new_id, label=token, anchors=[{"from":tok_begin_char, "to":tok_end_char}])
            else:
                # add new nodes, all corresponding to omitted span
                for new_id in id_group:
                    graph.add_node(new_id, label=omitted_span, anchors=[{"from": begin_char, "to": end_char}])
        # special treatment is required for missing tokens after the last existing node
        # (if there are tokens left in self.input not covered by node anchors)
        last_end_char_of_nodes = max([n.anchors[0]['to'] for n in graph.nodes])
        if last_end_char_of_nodes < length:
            # the meaning is that there is some span of the sentence not covered;
            # we will add nodes according to num of tokens in this last span
            omitted_span = graph.input[last_end_char_of_nodes:]
            for i,token in enumerate(omitted_span.strip().split()):
                new_id = max_id+1+i
                tok_begin_char = last_end_char_of_nodes + omitted_span.find(token)
                tok_end_char = tok_begin_char + len(token)
                graph.add_node(new_id, label=token, anchors=[{"from":tok_begin_char, "to":tok_end_char}])
        # as a finish, sort nodes in graph so that they will again be ordered by id (& realization location)
        graph.nodes = list(sorted(graph.nodes))
        return graph