Spaces:
Runtime error
Runtime error
File size: 22,426 Bytes
8044721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
import multiprocessing as mp
import sys
from operator import itemgetter
import numpy as np
import score.core
from score.smatch import smatch
from score.ucca import identify
counter = 0
def reindex(i):
return -2 - i
def get_or_update(index, key):
return index.setdefault(key, len(index))
class InternalGraph():
def __init__(self, graph, index):
self.node2id = dict()
self.id2node = dict()
self.nodes = []
self.edges = []
for i, node in enumerate(graph.nodes):
self.node2id[node] = i
self.id2node[i] = node
self.nodes.append(i)
for edge in graph.edges:
src = graph.find_node(edge.src)
src = self.node2id[src]
tgt = graph.find_node(edge.tgt)
tgt = self.node2id[tgt]
self.edges.append((src, tgt, edge.lab))
if edge.attributes:
for prop, val in zip(edge.attributes, edge.values):
self.edges.append((src, tgt, ("E", prop, val)))
#
# Build the pseudo-edges. These have target nodes that are
# unique for the value of the label, anchor, property.
#
if index is None:
index = dict()
for i, node in enumerate(graph.nodes):
# labels
j = get_or_update(index, ("L", node.label))
self.edges.append((i, reindex(j), None))
# tops
if node.is_top:
j = get_or_update(index, ("T"))
self.edges.append((i, reindex(j), None))
# anchors
if node.anchors is not None:
anchor = score.core.anchor(node);
if graph.input:
anchor = score.core.explode(graph.input, anchor);
else:
anchor = tuple(anchor);
j = get_or_update(index, ("A", anchor))
self.edges.append((i, reindex(j), None))
# properties
if node.properties:
for prop, val in zip(node.properties, node.values):
j = get_or_update(index, ("P", prop, val))
self.edges.append((i, reindex(j), None))
def initial_node_correspondences(graph1, graph2,
identities1, identities2,
bilexical):
#
# in the following, we assume that nodes in raw and internal
# graphs correspond by position into the .nodes. list
#
shape = (len(graph1.nodes), len(graph2.nodes) + 1)
rewards = np.zeros(shape, dtype=np.int);
edges = np.zeros(shape, dtype=np.int);
anchors = np.zeros(shape, dtype=np.int);
#
# initialization needs to be sensitive to whether or not we are looking at
# ordered graphs (aka Flavor 0, or the SDP family)
#
if bilexical:
queue = None;
else:
queue = [];
for i, node1 in enumerate(graph1.nodes):
for j, node2 in enumerate(graph2.nodes + [None]):
rewards[i, j], _, _, _ = node1.compare(node2);
if node2 is not None:
#
# also determine the maximum number of edge matches we
# can hope to score, for each node-node correspondence
#
src_edges_x = [ len([ 1 for e1 in graph1.edges if e1.src == node1.id and e1.lab == e2.lab ])
for e2 in graph2.edges if e2.src == node2.id ]
tgt_edges_x = [ len([ 1 for e1 in graph1.edges if e1.tgt == node1.id and e1.lab == e2.lab ])
for e2 in graph2.edges if e2.tgt == node2.id ]
edges[i, j] += sum(src_edges_x) + sum(tgt_edges_x)
#
# and the overlap of UCCA yields (sets of character position)
#
if identities1 and identities2:
anchors[i, j] += len(identities1[node1.id] &
identities2[node2.id])
if queue is not None:
queue.append((rewards[i, j], edges[i, j], anchors[i, j],
i, j if node2 is not None else None));
#
# adjust rewards to use anchor overlap and edge potential as a secondary
# and tertiary key, respectively. for even better initialization, maybe
# consider edge attributes too?
#
rewards *= 1000;
anchors *= 10;
rewards += edges + anchors;
if queue is None:
pairs = levenshtein(graph1, graph2);
else:
pairs = [];
sources = set();
targets = set();
for _, _, _, i, j in sorted(queue, key = itemgetter(0, 2, 1),
reverse = True):
if i not in sources and j not in targets:
pairs.append((i, j));
sources.add(i);
if j is not None: targets.add(j);
return pairs, rewards;
def levenshtein(graph1, graph2):
m = len(graph1.nodes)
n = len(graph2.nodes)
d = {(i,j): float('-inf') for i in range(m+1) for j in range(n+1)}
p = {(i,j): None for i in range(m+1) for j in range(n+1)}
d[(0,0)] = 0
for i in range(1, m+1):
d[(i,0)] = 0
p[(i,0)] = ((i-1,0), None)
for j in range(1, n+1):
d[(0,j)] = 0
p[(0,j)] = ((0,j-1), None)
for j, node2 in enumerate(graph2.nodes, 1):
for i, node1 in enumerate(graph1.nodes, 1):
best_d = float('-inf')
# "deletion"
cand_d = d[(i-1,j-0)]
if cand_d > best_d:
best_d = cand_d
best_p = ((i-1,j-0), None)
# "insertion"
cand_d = d[(i-0,j-1)]
if cand_d > best_d:
best_d = cand_d
best_p = ((i-0,j-1), None)
# "alignment"
cand_d = d[(i-1,j-1)] + node1.compare(node2)[2]
if cand_d > best_d:
best_d = cand_d
best_p = ((i-1,j-1), (i-1, j-1))
d[(i,j)] = best_d
p[(i,j)] = best_p
pairs = {i: None for i in range(len(graph1.nodes))}
def backtrace(idx):
ptr = p[idx]
if ptr is None:
pass
else:
next_idx, pair = ptr
if pair is not None:
i, j = pair
pairs[i] = j
backtrace(next_idx)
backtrace((m, n))
return sorted(pairs.items())
# The next function constructs the initial table with the candidates
# for the edge-to-edge correspondence. Each edge in the source graph
# is mapped to the set of all edges in the target graph.
def make_edge_candidates(graph1, graph2):
candidates = dict()
for raw_edge1 in graph1.edges:
src1, tgt1, lab1 = raw_edge1
if raw_edge1 not in candidates:
edge1_candidates = set()
else:
edge1_candidates = candidates[raw_edge1]
for raw_edge2 in graph2.edges:
src2, tgt2, lab2 = raw_edge2
edge2 = (src2, tgt2)
if tgt1 < 0:
# Edge edge1 is a pseudoedge. This can only map to
# another pseudoedge pointing to the same pseudonode.
if tgt2 == tgt1 and lab1 == lab2:
edge1_candidates.add(edge2)
elif tgt2 >= 0 and lab1 == lab2:
# Edge edge1 is a real edge. This can only map to
# another real edge.
edge1_candidates.add(edge2)
if edge1_candidates:
candidates[raw_edge1] = edge1_candidates
return candidates
# The next function updates the table with the candidates for the
# edge-to-edge correspondence when node `i` is tentatively mapped to
# node `j`.
def update_edge_candidates(edge_candidates, i, j):
new_candidates = edge_candidates.copy()
for edge1, edge1_candidates in edge_candidates.items():
if i == edge1[0] or i == edge1[1]:
# Edge edge1 is affected by the tentative assignment. Need
# to explicitly construct the new set of candidates for
# edge1.
# Both edges share the same source/target node
# (modulo the tentative assignment).
src1, tgt1, _ = edge1
edge1_candidates = {(src2, tgt2) for src2, tgt2 in edge1_candidates
if src1 == i and src2 == j or tgt1 == i and tgt2 == j}
if edge1_candidates:
new_candidates[edge1] = edge1_candidates
else:
new_candidates.pop(edge1)
return new_candidates, len(new_candidates)
def splits(xs):
# The source graph node is mapped to some target graph node (x).
for i, x in enumerate(xs):
yield x, xs[:i] + xs[i+1:]
# The source graph node is not mapped to any target graph node.
yield -1, xs
def sorted_splits(i, xs, rewards, pairs, bilexical):
for _i, _j in pairs:
if i == _i: j = _j if _j is not None else -1
if bilexical:
sorted_xs = sorted(xs, key=lambda x: (-abs(x-i), rewards.item((i, x)), -x), reverse=True)
else:
sorted_xs = sorted(xs, key=lambda x: (rewards.item((i, x)), -x), reverse=True)
if j in sorted_xs or j < 0:
if j >= 0: sorted_xs.remove(j)
sorted_xs = [j] + sorted_xs
yield from splits(sorted_xs)
# UCCA-specific rule:
# Do not pursue correspondences of nodes i and j in case there is
# a node dominated by i whose correspondence is not dominated by j
def identities(g, s):
#
# use overlap of UCCA yields in picking initial node pairing
#
if g.framework == "ucca" and g.input \
and s.framework == "ucca" and s.input:
g_identities = dict()
s_identities = dict()
g_dominated = dict()
s_dominated = dict()
for node in g.nodes:
g_identities, g_dominated = \
identify(g, node.id, g_identities, g_dominated)
g_identities = {key: score.core.explode(g.input, value)
for key, value in g_identities.items()}
for node in s.nodes:
s_identities, s_dominated = \
identify(s, node.id, s_identities, s_dominated)
s_identities = {key: score.core.explode(s.input, value)
for key, value in s_identities.items()}
else:
g_identities = s_identities = g_dominated = s_dominated = None
return g_identities, s_identities, g_dominated, s_dominated
def domination_conflict(graph1, graph2, cv, i, j, dominated1, dominated2):
if not dominated1 or not dominated2 or i < 0 or j < 0:
return False
dominated_i = dominated1[graph1.id2node[i].id]
dominated_j = dominated2[graph2.id2node[j].id]
# Both must be leaves or both must be non-leaves
if bool(dominated_i) != bool(dominated_j):
return True
for _i, _j in cv.items():
if _i >= 0 and _j >= 0 and \
graph1.id2node[_i].id in dominated_i and \
graph2.id2node[_j].id not in dominated_j:
return True
return False
# Find all maximum edge correspondences between the source graph
# (graph1) and the target graph (graph2). This implements the
# algorithm of McGregor (1982).
def correspondences(graph1, graph2, pairs, rewards, limit=None, trace=0,
dominated1=None, dominated2=None, bilexical = False):
global counter
index = dict()
graph1 = InternalGraph(graph1, index)
graph2 = InternalGraph(graph2, index)
cv = dict()
ce = make_edge_candidates(graph1, graph2)
# Visit the source graph nodes in descending order of rewards.
source_todo = [pair[0] for pair in pairs]
todo = [(cv, ce, source_todo, sorted_splits(
source_todo[0], graph2.nodes, rewards, pairs, bilexical))]
n_matched = 0
while todo and (limit is None or counter <= limit):
cv, ce, source_todo, untried = todo[-1]
i = source_todo[0]
try:
j, new_untried = next(untried)
if cv:
if bilexical: # respect node ordering in bi-lexical graphs
max_j = max((_j for _i, _j in cv.items() if _i < i), default=-1)
if 0 <= j < max_j + 1:
continue
elif domination_conflict(graph1, graph2, cv, i, j, dominated1, dominated2):
continue
counter += 1
if trace > 2: print("({}:{}) ".format(i, j), end="", file = sys.stderr)
new_cv = dict(cv)
new_cv[i] = j
new_ce, new_potential = update_edge_candidates(ce, i, j)
if new_potential > n_matched:
new_source_todo = source_todo[1:]
if new_source_todo:
if trace > 2: print("> ", end="", file = sys.stderr)
todo.append((new_cv, new_ce, new_source_todo,
sorted_splits(new_source_todo[0],
new_untried, rewards,
pairs, bilexical)))
else:
if trace > 2: print(file = sys.stderr)
yield new_cv, new_ce
n_matched = new_potential
except StopIteration:
if trace > 2: print("< ", file = sys.stderr)
todo.pop()
def is_valid(correspondence):
return all(len(x) <= 1 for x in correspondence.values())
def is_injective(correspondence):
seen = set()
for xs in correspondence.values():
for x in xs:
if x in seen:
return False
else:
seen.add(x)
return True
def schedule(g, s, rrhc_limit, mces_limit, trace, errors):
global counter;
try:
counter = 0;
g_identities, s_identities, g_dominated, s_dominated \
= identities(g, s);
bilexical = g.flavor == 0 or g.framework in {"dm", "psd", "pas", "ccd"};
pairs, rewards \
= initial_node_correspondences(g, s,
g_identities, s_identities,
bilexical);
if errors is not None and g.framework not in errors: errors[g.framework] = dict();
if trace > 1:
print("\n\ngraph #{} ({}; {}; {})"
"".format(g.id, g.language(), g.flavor, g.framework),
file = sys.stderr);
print("number of gold nodes: {}".format(len(g.nodes)),
file = sys.stderr);
print("number of system nodes: {}".format(len(s.nodes)),
file = sys.stderr);
print("number of edges: {}".format(len(g.edges)),
file = sys.stderr);
if trace > 2:
print("rewards and pairs:\n{}\n{}\n"
"".format(rewards, sorted(pairs)),
file = sys.stderr);
smatches = 0;
if g.framework in {"eds", "amr"} and rrhc_limit > 0:
smatches, _, _, mapping \
= smatch(g, s, rrhc_limit,
{"tops", "labels", "properties", "anchors",
"edges", "attributes"},
0, False);
mapping = [(i, j if j >= 0 else None)
for i, j in enumerate(mapping)];
tops, labels, properties, anchors, edges, attributes \
= g.score(s, mapping);
all = tops["c"] + labels["c"] + properties["c"] \
+ anchors["c"] + edges["c"] + attributes["c"];
status = "{}".format(smatches);
if smatches > all:
status = "{} vs. {}".format(smatches, all);
smatches = all;
if trace > 1:
print("pairs {} smatch [{}]: {}"
"".format("from" if set(pairs) != set(mapping) else "by",
status, sorted(mapping)),
file = sys.stderr);
if set(pairs) != set(mapping): pairs = mapping;
matches, best_cv, best_ce = 0, {}, {};
if g.nodes and mces_limit > 0:
for i, (cv, ce) in \
enumerate(correspondences(g, s, pairs, rewards,
mces_limit, trace,
dominated1 = g_dominated,
dominated2 = s_dominated,
bilexical = bilexical)):
# assert is_valid(ce)
# assert is_injective(ce)
n = sum(map(len, ce.values()));
if n > matches:
if trace > 1:
print("\n[{}] solution #{}; matches: {}"
"".format(counter, i, n), file = sys.stderr);
matches, best_cv, best_ce = n, cv, ce;
tops, labels, properties, anchors, edges, attributes \
= g.score(s, best_cv or pairs, errors);
# assert matches >= smatches;
if trace > 1:
if smatches and matches != smatches:
print("delta to smatch: {}"
"".format(matches - smatches), file = sys.stderr);
print("[{}] edges in correspondence: {}"
"".format(counter, matches), file = sys.stderr)
print("tops: {}\nlabels: {}\nproperties: {}\nanchors: {}"
"\nedges: {}\nattributes: {}"
"".format(tops, labels, properties, anchors,
edges, attributes), file = sys.stderr);
if trace > 2:
print(best_cv, file = sys.stderr)
print(best_ce, file = sys.stderr)
return g.id, g, s, tops, labels, properties, anchors, \
edges, attributes, matches, counter, None;
except Exception as e:
#
# _fix_me_
#
raise e;
return g.id, g, s, None, None, None, None, None, None, None, None, e;
def evaluate(gold, system, format = "json",
limits = None,
cores = 0, trace = 0, errors = None, quiet = False):
def update(total, counts):
for key in ("g", "s", "c"):
total[key] += counts[key];
def finalize(counts):
p, r, f = score.core.fscore(counts["g"], counts["s"], counts["c"]);
counts.update({"p": p, "r": r, "f": f});
if limits is None:
limits = {"rrhc": 20, "mces": 500000}
rrhc_limit = mces_limit = None;
if isinstance(limits, dict):
if "rrhc" in limits: rrhc_limit = limits["rrhc"];
if "mces" in limits: mces_limit = limits["mces"];
if rrhc_limit is None or rrhc_limit < 0: rrhc_limit = 20;
if mces_limit is None or mces_limit < 0: mces_limit = 500000;
if trace > 1:
print("RRHC limit: {}; MCES limit: {}".format(rrhc_limit, mces_limit),
file = sys.stderr);
total_matches = total_steps = 0;
total_pairs = 0;
total_empty = 0;
total_inexact = 0;
total_tops = {"g": 0, "s": 0, "c": 0}
total_labels = {"g": 0, "s": 0, "c": 0}
total_properties = {"g": 0, "s": 0, "c": 0}
total_anchors = {"g": 0, "s": 0, "c": 0}
total_edges = {"g": 0, "s": 0, "c": 0}
total_attributes = {"g": 0, "s": 0, "c": 0}
scores = dict() if trace else None;
if cores > 1:
if trace > 1:
print("mces.evaluate(): using {} cores".format(cores),
file = sys.stderr);
with mp.Pool(cores) as pool:
results = pool.starmap(schedule,
((g, s, rrhc_limit, mces_limit,
trace, errors)
for g, s
in score.core.intersect(gold,
system,
quiet = quiet)));
else:
results = (schedule(g, s, rrhc_limit, mces_limit, trace, errors)
for g, s in score.core.intersect(gold, system));
for id, g, s, tops, labels, properties, anchors, \
edges, attributes, matches, steps, error \
in results:
framework = g.framework if g.framework else "none";
if scores is not None and framework not in scores: scores[framework] = dict();
if s.nodes is None or len(s.nodes) == 0:
total_empty += 1;
if error is None:
total_matches += matches;
total_steps += steps;
update(total_tops, tops);
update(total_labels, labels);
update(total_properties, properties);
update(total_anchors, anchors);
update(total_edges, edges);
update(total_attributes, attributes);
total_pairs += 1;
if mces_limit == 0 or steps > mces_limit: total_inexact += 1;
if trace and s.nodes is not None and len(s.nodes) != 0:
if id in scores[framework]:
print("mces.evaluate(): duplicate {} graph identifier: {}"
"".format(framework, id), file = sys.stderr);
scores[framework][id] \
= {"tops": tops, "labels": labels,
"properties": properties, "anchors": anchors,
"edges": edges, "attributes": attributes,
"exact": not (mces_limit == 0 or steps > mces_limit),
"steps": steps};
else:
print("mces.evaluate(): exception in {} graph #{}:\n{}"
"".format(framework, id, error));
if trace:
scores[framework][id] = {"error": repr(error)};
total_all = {"g": 0, "s": 0, "c": 0};
for counts in [total_tops, total_labels, total_properties, total_anchors,
total_edges, total_attributes]:
update(total_all, counts);
finalize(counts);
finalize(total_all);
result = {"n": total_pairs, "null": total_empty,
"exact": total_pairs - total_inexact,
"tops": total_tops, "labels": total_labels,
"properties": total_properties, "anchors": total_anchors,
"edges": total_edges, "attributes": total_attributes,
"all": total_all};
if trace: result["scores"] = scores;
return result;
|