File size: 22,426 Bytes
8044721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import multiprocessing as mp
import sys
from operator import itemgetter

import numpy as np

import score.core
from score.smatch import smatch
from score.ucca import identify

counter = 0

def reindex(i):
    return -2 - i

def get_or_update(index, key):
    return index.setdefault(key, len(index))

class InternalGraph():

    def __init__(self, graph, index):
        self.node2id = dict()
        self.id2node = dict()
        self.nodes = []
        self.edges = []
        for i, node in enumerate(graph.nodes):
            self.node2id[node] = i
            self.id2node[i] = node
            self.nodes.append(i)
        for edge in graph.edges:
            src = graph.find_node(edge.src)
            src = self.node2id[src]
            tgt = graph.find_node(edge.tgt)
            tgt = self.node2id[tgt]
            self.edges.append((src, tgt, edge.lab))
            if edge.attributes:
                for prop, val in zip(edge.attributes, edge.values):
                    self.edges.append((src, tgt, ("E", prop, val)))
        #
        # Build the pseudo-edges. These have target nodes that are
        # unique for the value of the label, anchor, property.
        #
        if index is None:
            index = dict()
        for i, node in enumerate(graph.nodes):
            # labels
            j = get_or_update(index, ("L", node.label))
            self.edges.append((i, reindex(j), None))
            # tops
            if node.is_top:
                j = get_or_update(index, ("T"))
                self.edges.append((i, reindex(j), None))
            # anchors
            if node.anchors is not None:
                anchor = score.core.anchor(node);
                if graph.input:
                    anchor = score.core.explode(graph.input, anchor);
                else:
                    anchor = tuple(anchor);
                j = get_or_update(index, ("A", anchor))
                self.edges.append((i, reindex(j), None))
            # properties
            if node.properties:
                for prop, val in zip(node.properties, node.values):
                    j = get_or_update(index, ("P", prop, val))
                    self.edges.append((i, reindex(j), None))

def initial_node_correspondences(graph1, graph2,
                                 identities1, identities2,
                                 bilexical):
    #
    # in the following, we assume that nodes in raw and internal
    # graphs correspond by position into the .nodes. list
    #
    shape = (len(graph1.nodes), len(graph2.nodes) + 1)
    rewards = np.zeros(shape, dtype=np.int);
    edges = np.zeros(shape, dtype=np.int);
    anchors = np.zeros(shape, dtype=np.int);

    #
    # initialization needs to be sensitive to whether or not we are looking at
    # ordered graphs (aka Flavor 0, or the SDP family)
    #
    if bilexical:
        queue = None;
    else:
        queue = [];
        
    for i, node1 in enumerate(graph1.nodes):
        for j, node2 in enumerate(graph2.nodes + [None]):
            rewards[i, j], _, _, _ = node1.compare(node2);
            if node2 is not None:
                #
                # also determine the maximum number of edge matches we
                # can hope to score, for each node-node correspondence
                #
                src_edges_x = [ len([ 1 for e1 in graph1.edges if e1.src == node1.id and e1.lab == e2.lab ])
                                for e2 in graph2.edges if e2.src == node2.id ]
                tgt_edges_x = [ len([ 1 for e1 in graph1.edges if e1.tgt == node1.id and e1.lab == e2.lab ])
                                for e2 in graph2.edges if e2.tgt == node2.id ]
                edges[i, j] += sum(src_edges_x) + sum(tgt_edges_x)

                #
                # and the overlap of UCCA yields (sets of character position)
                #
                if identities1 and identities2:
                    anchors[i, j] += len(identities1[node1.id] &
                                         identities2[node2.id])
            if queue is not None:
                queue.append((rewards[i, j], edges[i, j], anchors[i, j],
                              i, j if node2 is not None else None));

    #
    # adjust rewards to use anchor overlap and edge potential as a secondary
    # and tertiary key, respectively.  for even better initialization, maybe
    # consider edge attributes too?
    #
    rewards *= 1000;
    anchors *= 10;
    rewards += edges + anchors;

    if queue is None:        
        pairs = levenshtein(graph1, graph2);
    else:
        pairs = [];
        sources = set();
        targets = set();
        for _, _, _, i, j in sorted(queue, key = itemgetter(0, 2, 1),
                                    reverse = True):
            if i not in sources and j not in targets:
                pairs.append((i, j));
                sources.add(i);
                if j is not None: targets.add(j);

    return pairs, rewards;

def levenshtein(graph1, graph2):
    m = len(graph1.nodes)
    n = len(graph2.nodes)
    d = {(i,j): float('-inf') for i in range(m+1) for j in range(n+1)}
    p = {(i,j): None for i in range(m+1) for j in range(n+1)}
    d[(0,0)] = 0
    for i in range(1, m+1):
        d[(i,0)] = 0
        p[(i,0)] = ((i-1,0), None)
    for j in range(1, n+1):
        d[(0,j)] = 0
        p[(0,j)] = ((0,j-1), None)
    for j, node2 in enumerate(graph2.nodes, 1):
        for i, node1 in enumerate(graph1.nodes, 1):
            best_d = float('-inf')
            # "deletion"
            cand_d = d[(i-1,j-0)]
            if cand_d > best_d:
                best_d = cand_d
                best_p = ((i-1,j-0), None)
            # "insertion"
            cand_d = d[(i-0,j-1)]
            if cand_d > best_d:
                best_d = cand_d
                best_p = ((i-0,j-1), None)
            # "alignment"
            cand_d = d[(i-1,j-1)] + node1.compare(node2)[2]
            if cand_d > best_d:
                best_d = cand_d
                best_p = ((i-1,j-1), (i-1, j-1))
            d[(i,j)] = best_d
            p[(i,j)] = best_p

    pairs = {i: None for i in range(len(graph1.nodes))}
    def backtrace(idx):
        ptr = p[idx]
        if ptr is None:
            pass
        else:
            next_idx, pair = ptr
            if pair is not None:
                i, j = pair
                pairs[i] = j
            backtrace(next_idx)
    backtrace((m, n))
    return sorted(pairs.items())

# The next function constructs the initial table with the candidates
# for the edge-to-edge correspondence. Each edge in the source graph
# is mapped to the set of all edges in the target graph.
def make_edge_candidates(graph1, graph2):
    candidates = dict()
    for raw_edge1 in graph1.edges:
        src1, tgt1, lab1 = raw_edge1
        if raw_edge1 not in candidates:
            edge1_candidates = set()
        else:
            edge1_candidates = candidates[raw_edge1]
        for raw_edge2 in graph2.edges:
            src2, tgt2, lab2 = raw_edge2
            edge2 = (src2, tgt2)
            if tgt1 < 0:
                # Edge edge1 is a pseudoedge. This can only map to
                # another pseudoedge pointing to the same pseudonode.
                if tgt2 == tgt1 and lab1 == lab2:
                    edge1_candidates.add(edge2)
            elif tgt2 >= 0 and lab1 == lab2:
                # Edge edge1 is a real edge. This can only map to
                # another real edge.
                edge1_candidates.add(edge2)
        if edge1_candidates:
            candidates[raw_edge1] = edge1_candidates
    return candidates

# The next function updates the table with the candidates for the
# edge-to-edge correspondence when node `i` is tentatively mapped to
# node `j`.
def update_edge_candidates(edge_candidates, i, j):
    new_candidates = edge_candidates.copy()
    for edge1, edge1_candidates in edge_candidates.items():
        if i == edge1[0] or i == edge1[1]:
            # Edge edge1 is affected by the tentative assignment. Need
            # to explicitly construct the new set of candidates for
            # edge1.
            # Both edges share the same source/target node
            # (modulo the tentative assignment).
            src1, tgt1, _ = edge1
            edge1_candidates = {(src2, tgt2) for src2, tgt2 in edge1_candidates
                                    if src1 == i and src2 == j or tgt1 == i and tgt2 == j}
            if  edge1_candidates:
                new_candidates[edge1] = edge1_candidates
            else:
                new_candidates.pop(edge1)
    return new_candidates, len(new_candidates)

def splits(xs):
    # The source graph node is mapped to some target graph node (x).
    for i, x in enumerate(xs):
        yield x, xs[:i] + xs[i+1:]
    # The source graph node is not mapped to any target graph node.
    yield -1, xs

def sorted_splits(i, xs, rewards, pairs, bilexical):
    for _i, _j in pairs:
        if i == _i: j = _j if _j is not None else -1
    if bilexical:
        sorted_xs = sorted(xs, key=lambda x: (-abs(x-i), rewards.item((i, x)), -x), reverse=True)
    else:
        sorted_xs = sorted(xs, key=lambda x: (rewards.item((i, x)), -x), reverse=True)
    if j in sorted_xs or j < 0:
        if j >= 0: sorted_xs.remove(j)
        sorted_xs = [j] + sorted_xs
    yield from splits(sorted_xs)

# UCCA-specific rule:
# Do not pursue correspondences of nodes i and j in case there is
# a node dominated by i whose correspondence is not dominated by j
def identities(g, s):
    #
    # use overlap of UCCA yields in picking initial node pairing
    #
    if g.framework == "ucca" and g.input \
            and s.framework == "ucca" and s.input:
        g_identities = dict()
        s_identities = dict()
        g_dominated = dict()
        s_dominated = dict()
        for node in g.nodes:
            g_identities, g_dominated = \
                identify(g, node.id, g_identities, g_dominated)
        g_identities = {key: score.core.explode(g.input, value)
                        for key, value in g_identities.items()}
        for node in s.nodes:
            s_identities, s_dominated = \
                identify(s, node.id, s_identities, s_dominated)
        s_identities = {key: score.core.explode(s.input, value)
                        for key, value in s_identities.items()}
    else:
        g_identities = s_identities = g_dominated = s_dominated = None
    return g_identities, s_identities, g_dominated, s_dominated

def domination_conflict(graph1, graph2, cv, i, j, dominated1, dominated2):
    if not dominated1 or not dominated2 or i < 0 or j < 0:
        return False
    dominated_i = dominated1[graph1.id2node[i].id]
    dominated_j = dominated2[graph2.id2node[j].id]
    # Both must be leaves or both must be non-leaves
    if bool(dominated_i) != bool(dominated_j):
        return True
    for _i, _j in cv.items():
        if _i >= 0 and _j >= 0 and \
                graph1.id2node[_i].id in dominated_i and \
                graph2.id2node[_j].id not in dominated_j:
            return True
    return False

# Find all maximum edge correspondences between the source graph
# (graph1) and the target graph (graph2). This implements the
# algorithm of McGregor (1982).
def correspondences(graph1, graph2, pairs, rewards, limit=None, trace=0,
                    dominated1=None, dominated2=None, bilexical = False):
    global counter
    index = dict()
    graph1 = InternalGraph(graph1, index)
    graph2 = InternalGraph(graph2, index)
    cv = dict()
    ce = make_edge_candidates(graph1, graph2)
    # Visit the source graph nodes in descending order of rewards.
    source_todo = [pair[0] for pair in pairs]
    todo = [(cv, ce, source_todo, sorted_splits(
        source_todo[0], graph2.nodes, rewards, pairs, bilexical))]
    n_matched = 0
    while todo and (limit is None or counter <= limit):
        cv, ce, source_todo, untried = todo[-1]
        i = source_todo[0]
        try:
            j, new_untried = next(untried)
            if cv:
                if bilexical:  # respect node ordering in bi-lexical graphs
                    max_j = max((_j for _i, _j in cv.items() if _i < i), default=-1)
                    if 0 <= j < max_j + 1:
                        continue
                elif domination_conflict(graph1, graph2, cv, i, j, dominated1, dominated2):
                    continue
            counter += 1
            if trace > 2: print("({}:{}) ".format(i, j), end="", file = sys.stderr)
            new_cv = dict(cv)
            new_cv[i] = j
            new_ce, new_potential = update_edge_candidates(ce, i, j)
            if new_potential > n_matched:
                new_source_todo = source_todo[1:]
                if new_source_todo:
                    if trace > 2: print("> ", end="", file = sys.stderr)
                    todo.append((new_cv, new_ce, new_source_todo,
                                 sorted_splits(new_source_todo[0],
                                               new_untried, rewards,
                                               pairs, bilexical)))
                else:
                    if trace > 2: print(file = sys.stderr)
                    yield new_cv, new_ce
                    n_matched = new_potential
        except StopIteration:
            if trace > 2: print("< ", file = sys.stderr)
            todo.pop()

def is_valid(correspondence):
    return all(len(x) <= 1 for x in correspondence.values())

def is_injective(correspondence):
    seen = set()
    for xs in correspondence.values():
        for x in xs:
            if x in seen:
                return False
            else:
                seen.add(x)
    return True

def schedule(g, s, rrhc_limit, mces_limit, trace, errors):
    global counter;
    try:
        counter = 0;
        g_identities, s_identities, g_dominated, s_dominated \
            = identities(g, s);
        bilexical = g.flavor == 0 or g.framework in {"dm", "psd", "pas", "ccd"};
        pairs, rewards \
            = initial_node_correspondences(g, s,
                                           g_identities, s_identities,
                                           bilexical);
        if errors is not None and g.framework not in errors: errors[g.framework] = dict();
        if trace > 1:
            print("\n\ngraph #{} ({}; {}; {})"
                  "".format(g.id, g.language(), g.flavor, g.framework),
                  file = sys.stderr);
            print("number of gold nodes: {}".format(len(g.nodes)),
                  file = sys.stderr);
            print("number of system nodes: {}".format(len(s.nodes)),
                  file = sys.stderr);
            print("number of edges: {}".format(len(g.edges)),
                  file = sys.stderr);
            if trace > 2:
                print("rewards and pairs:\n{}\n{}\n"
                      "".format(rewards, sorted(pairs)),
                      file = sys.stderr);
        smatches = 0;
        if g.framework in {"eds", "amr"} and rrhc_limit > 0:
            smatches, _, _, mapping \
                = smatch(g, s, rrhc_limit,
                         {"tops", "labels", "properties", "anchors",
                          "edges", "attributes"},
                         0, False);
            mapping = [(i, j if j >= 0 else None)
                       for i, j in enumerate(mapping)];
            tops, labels, properties, anchors, edges, attributes \
                = g.score(s, mapping);
            all = tops["c"] + labels["c"] + properties["c"] \
                + anchors["c"] + edges["c"] + attributes["c"];
            status = "{}".format(smatches);
            if smatches > all:
                status = "{} vs. {}".format(smatches, all);
                smatches = all;
            if trace > 1:
                print("pairs {} smatch [{}]: {}"
                      "".format("from" if set(pairs) != set(mapping) else "by",
                                status, sorted(mapping)),
                      file = sys.stderr);
            if set(pairs) != set(mapping): pairs = mapping;
        matches, best_cv, best_ce = 0, {}, {};
        if g.nodes and mces_limit > 0:
            for i, (cv, ce) in \
                enumerate(correspondences(g, s, pairs, rewards,
                                          mces_limit, trace,
                                          dominated1 = g_dominated,
                                          dominated2 = s_dominated,
                                          bilexical = bilexical)):
#               assert is_valid(ce)
#               assert is_injective(ce)
                n = sum(map(len, ce.values()));
                if n > matches:
                    if trace > 1:
                        print("\n[{}] solution #{}; matches: {}"
                              "".format(counter, i, n), file = sys.stderr);
                    matches, best_cv, best_ce = n, cv, ce;
        tops, labels, properties, anchors, edges, attributes \
            = g.score(s, best_cv or pairs, errors);
#       assert matches >= smatches;
        if trace > 1:
            if smatches and matches != smatches:
                print("delta to smatch: {}"
                      "".format(matches - smatches), file = sys.stderr);
            print("[{}] edges in correspondence: {}"
                  "".format(counter, matches), file = sys.stderr)
            print("tops: {}\nlabels: {}\nproperties: {}\nanchors: {}"
                  "\nedges: {}\nattributes: {}"
                  "".format(tops, labels, properties, anchors,
                            edges, attributes), file = sys.stderr);
            if trace > 2:
                print(best_cv, file = sys.stderr)
                print(best_ce, file = sys.stderr)
        return g.id, g, s, tops, labels, properties, anchors, \
            edges, attributes, matches, counter, None;
                
    except Exception as e:
        #
        # _fix_me_
        #
        raise e;
        return g.id, g, s, None, None, None, None, None, None, None, None, e;

def evaluate(gold, system, format = "json",
             limits = None,
             cores = 0, trace = 0, errors = None, quiet = False):
    def update(total, counts):
        for key in ("g", "s", "c"):
            total[key] += counts[key];

    def finalize(counts):
        p, r, f = score.core.fscore(counts["g"], counts["s"], counts["c"]);
        counts.update({"p": p, "r": r, "f": f});

    if limits is None:
        limits = {"rrhc": 20, "mces": 500000}
    rrhc_limit = mces_limit = None;
    if isinstance(limits, dict):
        if "rrhc" in limits: rrhc_limit = limits["rrhc"];
        if "mces" in limits: mces_limit = limits["mces"];
    if rrhc_limit is None or rrhc_limit < 0: rrhc_limit = 20;
    if mces_limit is None or mces_limit < 0: mces_limit = 500000;
    if trace > 1:
        print("RRHC limit: {}; MCES limit: {}".format(rrhc_limit, mces_limit),
              file = sys.stderr);
    total_matches = total_steps = 0;
    total_pairs = 0;
    total_empty = 0;
    total_inexact = 0;
    total_tops = {"g": 0, "s": 0, "c": 0}
    total_labels = {"g": 0, "s": 0, "c": 0}
    total_properties = {"g": 0, "s": 0, "c": 0}
    total_anchors = {"g": 0, "s": 0, "c": 0}
    total_edges = {"g": 0, "s": 0, "c": 0}
    total_attributes = {"g": 0, "s": 0, "c": 0}
    scores = dict() if trace else None;
    if cores > 1:
        if trace > 1:
            print("mces.evaluate(): using {} cores".format(cores),
                  file = sys.stderr);
        with mp.Pool(cores) as pool:
            results = pool.starmap(schedule,
                                   ((g, s, rrhc_limit, mces_limit,
                                     trace, errors)
                                    for g, s
                                    in score.core.intersect(gold,
                                                            system,
                                                            quiet = quiet)));
    else:
        results = (schedule(g, s, rrhc_limit, mces_limit, trace, errors)
                   for g, s in score.core.intersect(gold, system));

    for id, g, s, tops, labels, properties, anchors, \
        edges, attributes, matches, steps, error \
        in results:
        framework = g.framework if g.framework else "none";
        if scores is not None and framework not in scores: scores[framework] = dict();
        if s.nodes is None or len(s.nodes) == 0:
            total_empty += 1;
        if error is None:
            total_matches += matches;
            total_steps += steps;
            update(total_tops, tops);
            update(total_labels, labels);
            update(total_properties, properties);
            update(total_anchors, anchors);
            update(total_edges, edges);
            update(total_attributes, attributes);
            total_pairs += 1;
            if mces_limit == 0 or steps > mces_limit: total_inexact += 1;

            if trace and s.nodes is not None and len(s.nodes) != 0:
                if id in scores[framework]:
                    print("mces.evaluate(): duplicate {} graph identifier: {}"
                          "".format(framework, id), file = sys.stderr);
                scores[framework][id] \
                    = {"tops": tops, "labels": labels,
                       "properties": properties, "anchors": anchors,
                       "edges": edges, "attributes": attributes,
                       "exact": not (mces_limit == 0 or steps > mces_limit),
                       "steps": steps};
        else:
            print("mces.evaluate(): exception in {} graph #{}:\n{}"
                  "".format(framework, id, error));
            if trace:
                scores[framework][id] = {"error": repr(error)};

    total_all = {"g": 0, "s": 0, "c": 0};
    for counts in [total_tops, total_labels, total_properties, total_anchors,
                   total_edges, total_attributes]:
        update(total_all, counts);
        finalize(counts);
    finalize(total_all);
    result = {"n": total_pairs, "null": total_empty,
              "exact": total_pairs - total_inexact,
              "tops": total_tops, "labels": total_labels,
              "properties": total_properties, "anchors": total_anchors,
              "edges": total_edges, "attributes": total_attributes,
              "all": total_all};
    if trace: result["scores"] = scores;
    return result;