File size: 2,080 Bytes
8044721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/env python3
# coding=utf-8

import torch
from scipy.optimize import linear_sum_assignment


@torch.no_grad()
def match_label(target, matching, shape, device, compute_mask=True):
    idx = _get_src_permutation_idx(matching)

    target_classes = torch.zeros(shape, dtype=torch.long, device=device)
    target_classes[idx] = torch.cat([t[J] for t, (_, J) in zip(target, matching)])

    return target_classes


@torch.no_grad()
def match_anchor(anchor, matching, shape, device):
    target, _ = anchor

    idx = _get_src_permutation_idx(matching)
    target_classes = torch.zeros(shape, dtype=torch.long, device=device)
    target_classes[idx] = torch.cat([t[J, :] for t, (_, J) in zip(target, matching)])

    matched_mask = torch.ones(shape[:2], dtype=torch.bool, device=device)
    matched_mask[idx] = False

    return target_classes, matched_mask


def _get_src_permutation_idx(indices):
    # permute predictions following indices
    batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
    src_idx = torch.cat([src for (src, _) in indices])
    return batch_idx, src_idx


@torch.no_grad()
def get_matching(cost_matrices):
    output = []
    for cost_matrix in cost_matrices:
        indices = linear_sum_assignment(cost_matrix, maximize=True)
        indices = (torch.tensor(indices[0], dtype=torch.long), torch.tensor(indices[1], dtype=torch.long))
        output.append(indices)

    return output


def sort_by_target(matchings):
    new_matching = []
    for matching in matchings:
        source, target = matching
        target, indices = target.sort()
        source = source[indices]
        new_matching.append((source, target))
    return new_matching


def reorder(hidden, matchings, max_length):
    batch_size, _, hidden_dim = hidden.shape
    matchings = sort_by_target(matchings)

    result = torch.zeros(batch_size, max_length, hidden_dim, device=hidden.device)
    for b in range(batch_size):
        indices = matchings[b][0]
        result[b, : len(indices), :] = hidden[b, indices, :]

    return result