Spaces:
Runtime error
Runtime error
File size: 13,274 Bytes
8044721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
#!/usr/bin/env python3
# coding=utf-8
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from model.module.edge_classifier import EdgeClassifier
from model.module.anchor_classifier import AnchorClassifier
from utility.cross_entropy import cross_entropy, binary_cross_entropy
from utility.hungarian_matching import get_matching, reorder, match_anchor, match_label
from utility.utils import create_padding_mask
class AbstractHead(nn.Module):
def __init__(self, dataset, args, config, initialize: bool):
super(AbstractHead, self).__init__()
self.edge_classifier = self.init_edge_classifier(dataset, args, config, initialize)
self.label_classifier = self.init_label_classifier(dataset, args, config, initialize)
self.anchor_classifier = self.init_anchor_classifier(dataset, args, config, initialize, mode="anchor")
self.source_anchor_classifier = self.init_anchor_classifier(dataset, args, config, initialize, mode="source_anchor")
self.target_anchor_classifier = self.init_anchor_classifier(dataset, args, config, initialize, mode="target_anchor")
self.query_length = args.query_length
self.focal = args.focal
self.dataset = dataset
def forward(self, encoder_output, decoder_output, encoder_mask, decoder_mask, batch):
output = {}
decoder_lens = self.query_length * batch["every_input"][1]
output["label"] = self.forward_label(decoder_output)
output["anchor"] = self.forward_anchor(decoder_output, encoder_output, encoder_mask, mode="anchor") # shape: (B, T_l, T_w)
output["source_anchor"] = self.forward_anchor(decoder_output, encoder_output, encoder_mask, mode="source_anchor") # shape: (B, T_l, T_w)
output["target_anchor"] = self.forward_anchor(decoder_output, encoder_output, encoder_mask, mode="target_anchor") # shape: (B, T_l, T_w)
cost_matrices = self.create_cost_matrices(output, batch, decoder_lens)
matching = get_matching(cost_matrices)
decoder_output = reorder(decoder_output, matching, batch["labels"][0].size(1))
output["edge presence"], output["edge label"] = self.forward_edge(decoder_output)
return self.loss(output, batch, matching, decoder_mask)
def predict(self, encoder_output, decoder_output, encoder_mask, decoder_mask, batch, **kwargs):
every_input, word_lens = batch["every_input"]
decoder_lens = self.query_length * word_lens
batch_size = every_input.size(0)
label_pred = self.forward_label(decoder_output)
anchor_pred = self.forward_anchor(decoder_output, encoder_output, encoder_mask, mode="anchor") # shape: (B, T_l, T_w)
source_anchor_pred = self.forward_anchor(decoder_output, encoder_output, encoder_mask, mode="source_anchor") # shape: (B, T_l, T_w)
target_anchor_pred = self.forward_anchor(decoder_output, encoder_output, encoder_mask, mode="target_anchor") # shape: (B, T_l, T_w)
labels = [[] for _ in range(batch_size)]
anchors, source_anchors, target_anchors = [[] for _ in range(batch_size)], [[] for _ in range(batch_size)], [[] for _ in range(batch_size)]
for b in range(batch_size):
label_indices = self.inference_label(label_pred[b, :decoder_lens[b], :]).cpu()
for t in range(label_indices.size(0)):
label_index = label_indices[t].item()
if label_index == 0:
continue
decoder_output[b, len(labels[b]), :] = decoder_output[b, t, :]
labels[b].append(label_index)
if anchor_pred is None:
anchors[b].append(list(range(t // self.query_length, word_lens[b])))
else:
anchors[b].append(self.inference_anchor(anchor_pred[b, t, :word_lens[b]]).cpu())
if source_anchor_pred is None:
source_anchors[b].append(list(range(t // self.query_length, word_lens[b])))
else:
source_anchors[b].append(self.inference_anchor(source_anchor_pred[b, t, :word_lens[b]]).cpu())
if target_anchor_pred is None:
target_anchors[b].append(list(range(t // self.query_length, word_lens[b])))
else:
target_anchors[b].append(self.inference_anchor(target_anchor_pred[b, t, :word_lens[b]]).cpu())
decoder_output = decoder_output[:, : max(len(l) for l in labels), :]
edge_presence, edge_labels = self.forward_edge(decoder_output)
outputs = [
self.parser.parse(
{
"labels": labels[b],
"anchors": anchors[b],
"source anchors": source_anchors[b],
"target anchors": target_anchors[b],
"edge presence": self.inference_edge_presence(edge_presence, b),
"edge labels": self.inference_edge_label(edge_labels, b),
"id": batch["id"][b].cpu(),
"tokens": batch["every_input"][0][b, : word_lens[b]].cpu(),
"token intervals": batch["token_intervals"][b, :, :].cpu(),
},
**kwargs
)
for b in range(batch_size)
]
return outputs
def loss(self, output, batch, matching, decoder_mask):
batch_size = batch["every_input"][0].size(0)
device = batch["every_input"][0].device
T_label = batch["labels"][0].size(1)
T_input = batch["every_input"][0].size(1)
T_edge = batch["edge_presence"].size(1)
input_mask = create_padding_mask(batch_size, T_input, batch["every_input"][1], device) # shape: (B, T_input)
label_mask = create_padding_mask(batch_size, T_label, batch["labels"][1], device) # shape: (B, T_label)
edge_mask = torch.eye(T_label, T_label, device=device, dtype=torch.bool).unsqueeze(0) # shape: (1, T_label, T_label)
edge_mask = edge_mask | label_mask.unsqueeze(1) | label_mask.unsqueeze(2) # shape: (B, T_label, T_label)
if T_edge != T_label:
edge_mask = F.pad(edge_mask, (T_edge - T_label, 0, T_edge - T_label, 0), value=0)
edge_label_mask = (batch["edge_presence"] == 0) | edge_mask
if output["edge label"] is not None:
batch["edge_labels"] = (
batch["edge_labels"][0][:, :, :, :output["edge label"].size(-1)],
batch["edge_labels"][1],
)
losses = {}
losses.update(self.loss_label(output, batch, decoder_mask, matching))
losses.update(self.loss_anchor(output, batch, input_mask, matching, mode="anchor"))
losses.update(self.loss_anchor(output, batch, input_mask, matching, mode="source_anchor"))
losses.update(self.loss_anchor(output, batch, input_mask, matching, mode="target_anchor"))
losses.update(self.loss_edge_presence(output, batch, edge_mask))
losses.update(self.loss_edge_label(output, batch, edge_label_mask.unsqueeze(-1)))
stats = {f"{key}": value.detach().cpu().item() for key, value in losses.items()}
total_loss = sum(losses.values()) / len(losses)
return total_loss, stats
@torch.no_grad()
def create_cost_matrices(self, output, batch, decoder_lens):
batch_size = len(batch["labels"][1])
decoder_lens = decoder_lens.cpu()
matrices = []
for b in range(batch_size):
label_cost_matrix = self.label_cost_matrix(output, batch, decoder_lens, b)
anchor_cost_matrix = self.anchor_cost_matrix(output, batch, decoder_lens, b)
cost_matrix = label_cost_matrix * anchor_cost_matrix
matrices.append(cost_matrix.cpu())
return matrices
def init_edge_classifier(self, dataset, args, config, initialize: bool):
if not config["edge presence"] and not config["edge label"]:
return None
return EdgeClassifier(dataset, args, initialize, presence=config["edge presence"], label=config["edge label"])
def init_label_classifier(self, dataset, args, config, initialize: bool):
if not config["label"]:
return None
classifier = nn.Sequential(
nn.Dropout(args.dropout_label),
nn.Linear(args.hidden_size, len(dataset.label_field.vocab) + 1, bias=True)
)
if initialize:
classifier[1].bias.data = dataset.label_freqs.log()
return classifier
def init_anchor_classifier(self, dataset, args, config, initialize: bool, mode="anchor"):
if not config[mode]:
return None
return AnchorClassifier(dataset, args, initialize, mode=mode)
def forward_edge(self, decoder_output):
if self.edge_classifier is None:
return None, None
return self.edge_classifier(decoder_output)
def forward_label(self, decoder_output):
if self.label_classifier is None:
return None
return torch.log_softmax(self.label_classifier(decoder_output), dim=-1)
def forward_anchor(self, decoder_output, encoder_output, encoder_mask, mode="anchor"):
classifier = getattr(self, f"{mode}_classifier")
if classifier is None:
return None
return classifier(decoder_output, encoder_output, encoder_mask)
def inference_label(self, prediction):
prediction = prediction.exp()
return torch.where(
prediction[:, 0] > prediction[:, 1:].sum(-1),
torch.zeros(prediction.size(0), dtype=torch.long, device=prediction.device),
prediction[:, 1:].argmax(dim=-1) + 1
)
def inference_anchor(self, prediction):
return prediction.sigmoid()
def inference_edge_presence(self, prediction, example_index: int):
if prediction is None:
return None
N = prediction.size(1)
mask = torch.eye(N, N, device=prediction.device, dtype=torch.bool)
return prediction[example_index, :, :].sigmoid().masked_fill(mask, 0.0).cpu()
def inference_edge_label(self, prediction, example_index: int):
if prediction is None:
return None
return prediction[example_index, :, :, :].cpu()
def loss_edge_presence(self, prediction, target, mask):
if self.edge_classifier is None or prediction["edge presence"] is None:
return {}
return {"edge presence": binary_cross_entropy(prediction["edge presence"], target["edge_presence"].float(), mask)}
def loss_edge_label(self, prediction, target, mask):
if self.edge_classifier is None or prediction["edge label"] is None:
return {}
return {"edge label": binary_cross_entropy(prediction["edge label"], target["edge_labels"][0].float(), mask)}
def loss_label(self, prediction, target, mask, matching):
if self.label_classifier is None or prediction["label"] is None:
return {}
prediction = prediction["label"]
target = match_label(
target["labels"][0], matching, prediction.shape[:-1], prediction.device, self.query_length
)
return {"label": cross_entropy(prediction, target, mask, focal=self.focal)}
def loss_anchor(self, prediction, target, mask, matching, mode="anchor"):
if getattr(self, f"{mode}_classifier") is None or prediction[mode] is None:
return {}
prediction = prediction[mode]
target, anchor_mask = match_anchor(target[mode], matching, prediction.shape, prediction.device)
mask = anchor_mask.unsqueeze(-1) | mask.unsqueeze(-2)
return {mode: binary_cross_entropy(prediction, target.float(), mask)}
def label_cost_matrix(self, output, batch, decoder_lens, b: int):
if output["label"] is None:
return 1.0
target_labels = batch["anchored_labels"][b] # shape: (num_nodes, num_inputs, num_classes)
label_prob = output["label"][b, : decoder_lens[b], :].exp().unsqueeze(0) # shape: (1, num_queries, num_classes)
tgt_label = target_labels.repeat_interleave(self.query_length, dim=1) # shape: (num_nodes, num_queries, num_classes)
cost_matrix = ((tgt_label * label_prob).sum(-1) * label_prob[:, :, 1:].sum(-1)).t().sqrt() # shape: (num_queries, num_nodes)
return cost_matrix
def anchor_cost_matrix(self, output, batch, decoder_lens, b: int):
if output["anchor"] is None:
return 1.0
num_nodes = batch["labels"][1][b]
word_lens = batch["every_input"][1]
target_anchors, _ = batch["anchor"]
pred_anchors = output["anchor"].sigmoid()
tgt_align = target_anchors[b, : num_nodes, : word_lens[b]] # shape: (num_nodes, num_inputs)
align_prob = pred_anchors[b, : decoder_lens[b], : word_lens[b]] # shape: (num_queries, num_inputs)
align_prob = align_prob.unsqueeze(1).expand(-1, num_nodes, -1) # shape: (num_queries, num_nodes, num_inputs)
align_prob = torch.where(tgt_align.unsqueeze(0).bool(), align_prob, 1.0 - align_prob) # shape: (num_queries, num_nodes, num_inputs)
cost_matrix = align_prob.log().mean(-1).exp() # shape: (num_queries, num_nodes)
return cost_matrix
|