File size: 5,604 Bytes
8044721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch


def normalize_abbreviations(text):
    text = text.replace(" n't ", "n't ")
    text = text.replace(" N'T ", "N'T ")
    text = text.replace(" 'll ", "'ll ")
    text = text.replace(" 'LL ", "'LL ")
    text = text.replace(" 're ", "'re ")
    text = text.replace(" 'RE ", "'RE ")
    text = text.replace(" 've ", "'ve ")
    text = text.replace(" 'VE ", "'VE ")
    text = text.replace(" 'm ", "'m ")
    text = text.replace(" 'M ", "'M ")
    text = text.replace(" 's ", "'s ")
    text = text.replace(" 'S ", "'S ")
    text = text.replace(" 'd ", "'d ")
    text = text.replace(" 'D ", "'D ")
    return text


def fix_quotes(text, quote_symbol='"'):
    n_quotes = text.count(f" {quote_symbol}") + text.count(f"{quote_symbol} ") - text.count(f" {quote_symbol} ")
    if (
        n_quotes == 0
        or (n_quotes % 2) == 1
        or f"{quote_symbol}{quote_symbol}" in text
        or f"{quote_symbol} {quote_symbol}" in text
    ):
        return text

    i, i_quote, n_changes = 0, 0, 0
    while i < len(text):
        if text[i] != quote_symbol or (i - 1 >= 0 and text[i - 1] != ' ' and i + 1 < len(text) and text[i + 1] != ' '):
            i += 1
            continue

        if (i_quote % 2) == 0:
            if i > 0 and text[i - 1] != ' ':
                text = text[:i] + ' ' + text[i:]
                i += 1
                n_changes += 1
            if i + 1 < len(text) and text[i + 1] == ' ':
                text = text[:i + 1] + text[i + 2:]
                n_changes += 1
        else:
            if i > 0 and text[i - 1] == ' ':
                text = text[:i - 1] + text[i:]
                i -= 1
                n_changes += 1
            if i + 1 < len(text) and text[i + 1].isalnum():
                text = text[:i + 1] + ' ' + text[i + 1:]
                n_changes += 1

        i_quote += 1
        i += 1

    return text


def detokenize(tokens, compact_dashes=False):
    text = ' '.join(tokens)
    text = normalize_abbreviations(text)

    if compact_dashes:
        text = text.replace(' - ', '-')

    for i in range(len(text) - 2, -1, -1):
        if text[i] == '.' and (text[i + 1].isupper() or text[i + 1] in ['β€˜', '(', '[', '{']):
            text = text[:i+1] + ' ' + text[i+1:]
        elif text[i] in ['?', '!', '…', '’'] and (text[i + 1].isalnum() or text[i + 1] in ['β€˜', '(', '[', '{']):
            text = text[:i+1] + ' ' + text[i+1:]
        elif i > 2 and text[i] == '.' and text[i - 1] == '.' and text[i - 2] == '.' and text[i + 1] != ' ':
            text = text[:i+1] + ' ' + text[i+1:]
        elif i > 2 and text[i] == '.' and text[i - 1] == '.' and text[i - 2] == '.' and text[i + 1] != ' ':
            text = text[:i+1] + ' ' + text[i+1:]
        elif text[i] == ',' and (text[i + 1].isalpha() or text[i + 1] in ['β€˜', '(', '[', '{']):
            text = text[:i+1] + ' ' + text[i+1:]
        elif text[i] in [';', ')', ']', '}', '%'] and (text[i + 1].isalnum() or text[i + 1] in ['β€˜', '(', '[', '{']):
            text = text[:i+1] + ' ' + text[i+1:]
        elif text[i] == ':' and (text[i + 1] in ['β€˜', '(', '[', '{'] or (text[i + 1].isalnum() and (not text[i + 1].isnumeric() or i - 1 < 0 or not text[i - 1].isnumeric()))):
            text = text[:i+1] + ' ' + text[i+1:]
        elif text[i] in ['(', '[', '{'] and text[i + 1] == ' ':
            text = text[:i+1] + text[i+2:]
        elif text[i] == ' ' and text[i+1] in ['.', ';', ':', '?', '!', '…', ',', '’', ')', ']']:
            text = text[:i] + text[i+1:]
        elif i > 0 and text[i] == ' ' and text[i - 1] in ['$', 'Β£', '€'] and text[i + 1].isnumeric():
            text = text[:i] + text[i+1:]
        elif i > 0 and text[i] == ' ' and text[i - 1].isnumeric() and text[i + 1] == '%':
            text = text[:i] + text[i+1:]

    text = fix_quotes(text, '"')
    text = fix_quotes(text, "'")

    spans = []
    word_offset, char_offset = 0, 0
    for i, ch in enumerate(text):
        if ch == ' ':
            if tokens[word_offset][char_offset] == ' ':
                char_offset += 1
            continue

        assert ch == tokens[word_offset][char_offset], f"{text}\n{' '.join(tokens)}\n{tokens[word_offset]}\n{char_offset} {ch}"

        if char_offset == 0:
            start = i

        if char_offset == len(tokens[word_offset]) - 1:
            end = i + 1
            spans.append((start, end))
            word_offset += 1
            char_offset = 0
        else:
            char_offset += 1

    return text, spans


def calculate_spans(original_spans, encoding_offsets):
    span_id = 0
    subword_spans = [[] for _ in original_spans]
    for i, (_, end) in enumerate(encoding_offsets):
        subword_spans[span_id].append(i + 1)

        while original_spans[span_id][1] <= end:
            span_id += 1
            if span_id < len(original_spans) and end > original_spans[span_id][0]:
                subword_spans[span_id].append(i + 1)

            if span_id == len(original_spans):
                return subword_spans

    return subword_spans


def subtokenize(tokens, tokenizer, compact_dashes=False):
    text, spans = detokenize(tokens, compact_dashes=compact_dashes)

    encoding = tokenizer(text, return_offsets_mapping=True)

    spans = calculate_spans(spans, encoding["offset_mapping"][1:-1])
    subwords = encoding["input_ids"]

    subword_mask = torch.zeros(len(subwords), len(spans), dtype=torch.bool)
    for word_id, subword_ids in enumerate(spans):
        for subword_id in subword_ids:
            subword_mask[subword_id + 1, word_id] = True

    return subwords, subword_mask