File size: 2,143 Bytes
8044721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python3
# coding=utf-8

import torch
from data.field.mini_torchtext.field import RawField
from data.field.mini_torchtext.vocab import Vocab
from collections import Counter
import types


class EdgeLabelField(RawField):
    def process(self, edges, device=None):
        edges, masks = self.numericalize(edges)
        edges, masks = self.pad(edges, masks, device)

        return edges, masks

    def pad(self, edges, masks, device):
        n_labels = len(self.vocab)

        tensor = torch.zeros(edges[0], edges[1], n_labels, dtype=torch.long, device=device)
        mask_tensor = torch.zeros(edges[0], edges[1], dtype=torch.bool, device=device)

        for edge in edges[-1]:
            tensor[edge[0], edge[1], edge[2]] = 1

        for mask in masks[-1]:
            mask_tensor[mask[0], mask[1]] = mask[2]

        return tensor, mask_tensor

    def numericalize(self, arr):
        def multi_map(array, function):
            if isinstance(array, tuple):
                return (array[0], array[1], function(array[2]))
            elif isinstance(array, list):
                return [multi_map(array[i], function) for i in range(len(array))]
            else:
                return array

        mask = multi_map(arr, lambda x: x is None)
        arr = multi_map(arr, lambda x: self.vocab.stoi[x] if x in self.vocab.stoi else 0)
        return arr, mask

    def build_vocab(self, *args):
        def generate(l):
            if isinstance(l, tuple):
                yield l[2]
            elif isinstance(l, list) or isinstance(l, types.GeneratorType):
                for i in l:
                    yield from generate(i)
            else:
                return

        counter = Counter()
        sources = []
        for arg in args:
            if isinstance(arg, torch.utils.data.Dataset):
                sources += [arg.get_examples(name) for name, field in arg.fields.items() if field is self]
            else:
                sources.append(arg)

        for x in generate(sources):
            if x is not None:
                counter.update([x])

        self.vocab = Vocab(counter, specials=[])