File size: 29,396 Bytes
8044721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
# coding: utf8
from collections import Counter, OrderedDict
from itertools import chain
import six
import torch

from .pipeline import Pipeline
from .utils import get_tokenizer, dtype_to_attr, is_tokenizer_serializable
from .vocab import Vocab


class RawField(object):
    """ Defines a general datatype.

    Every dataset consists of one or more types of data. For instance, a text
    classification dataset contains sentences and their classes, while a
    machine translation dataset contains paired examples of text in two
    languages. Each of these types of data is represented by a RawField object.
    A RawField object does not assume any property of the data type and
    it holds parameters relating to how a datatype should be processed.

    Attributes:
        preprocessing: The Pipeline that will be applied to examples
            using this field before creating an example.
            Default: None.
        postprocessing: A Pipeline that will be applied to a list of examples
            using this field before assigning to a batch.
            Function signature: (batch(list)) -> object
            Default: None.
        is_target: Whether this field is a target variable.
            Affects iteration over batches. Default: False
    """

    def __init__(self, preprocessing=None, postprocessing=None, is_target=False):
        self.preprocessing = preprocessing
        self.postprocessing = postprocessing
        self.is_target = is_target

    def preprocess(self, x):
        """ Preprocess an example if the `preprocessing` Pipeline is provided. """
        if hasattr(self, "preprocessing") and self.preprocessing is not None:
            return self.preprocessing(x)
        else:
            return x

    def process(self, batch, *args, **kwargs):
        """ Process a list of examples to create a batch.

        Postprocess the batch with user-provided Pipeline.

        Args:
            batch (list(object)): A list of object from a batch of examples.
        Returns:
            object: Processed object given the input and custom
            postprocessing Pipeline.
        """
        if self.postprocessing is not None:
            batch = self.postprocessing(batch)
        return batch


class Field(RawField):
    """Defines a datatype together with instructions for converting to Tensor.

    Field class models common text processing datatypes that can be represented
    by tensors.  It holds a Vocab object that defines the set of possible values
    for elements of the field and their corresponding numerical representations.
    The Field object also holds other parameters relating to how a datatype
    should be numericalized, such as a tokenization method and the kind of
    Tensor that should be produced.

    If a Field is shared between two columns in a dataset (e.g., question and
    answer in a QA dataset), then they will have a shared vocabulary.

    Attributes:
        sequential: Whether the datatype represents sequential data. If False,
            no tokenization is applied. Default: True.
        use_vocab: Whether to use a Vocab object. If False, the data in this
            field should already be numerical. Default: True.
        init_token: A token that will be prepended to every example using this
            field, or None for no initial token. Default: None.
        eos_token: A token that will be appended to every example using this
            field, or None for no end-of-sentence token. Default: None.
        fix_length: A fixed length that all examples using this field will be
            padded to, or None for flexible sequence lengths. Default: None.
        dtype: The torch.dtype class that represents a batch of examples
            of this kind of data. Default: torch.long.
        preprocessing: The Pipeline that will be applied to examples
            using this field after tokenizing but before numericalizing. Many
            Datasets replace this attribute with a custom preprocessor.
            Default: None.
        postprocessing: A Pipeline that will be applied to examples using
            this field after numericalizing but before the numbers are turned
            into a Tensor. The pipeline function takes the batch as a list, and
            the field's Vocab.
            Default: None.
        lower: Whether to lowercase the text in this field. Default: False.
        tokenize: The function used to tokenize strings using this field into
            sequential examples. If "spacy", the SpaCy tokenizer is
            used. If a non-serializable function is passed as an argument,
            the field will not be able to be serialized. Default: string.split.
        tokenizer_language: The language of the tokenizer to be constructed.
            Various languages currently supported only in SpaCy.
        include_lengths: Whether to return a tuple of a padded minibatch and
            a list containing the lengths of each examples, or just a padded
            minibatch. Default: False.
        batch_first: Whether to produce tensors with the batch dimension first.
            Default: False.
        pad_token: The string token used as padding. Default: "<pad>".
        unk_token: The string token used to represent OOV words. Default: "<unk>".
        pad_first: Do the padding of the sequence at the beginning. Default: False.
        truncate_first: Do the truncating of the sequence at the beginning. Default: False
        stop_words: Tokens to discard during the preprocessing step. Default: None
        is_target: Whether this field is a target variable.
            Affects iteration over batches. Default: False
    """

    vocab_cls = Vocab
    # Dictionary mapping PyTorch tensor dtypes to the appropriate Python
    # numeric type.
    dtypes = {
        torch.float32: float,
        torch.float: float,
        torch.float64: float,
        torch.double: float,
        torch.float16: float,
        torch.half: float,

        torch.uint8: int,
        torch.int8: int,
        torch.int16: int,
        torch.short: int,
        torch.int32: int,
        torch.int: int,
        torch.int64: int,
        torch.long: int,
    }

    ignore = ['dtype', 'tokenize']

    def __init__(self, sequential=True, use_vocab=True, init_token=None,
                 eos_token=None, fix_length=None, dtype=torch.long,
                 preprocessing=None, postprocessing=None, lower=False,
                 tokenize=None, tokenizer_language='en', include_lengths=False,
                 batch_first=False, pad_token="<pad>", unk_token="<unk>",
                 pad_first=False, truncate_first=False, stop_words=None,
                 is_target=False):
        self.sequential = sequential
        self.use_vocab = use_vocab
        self.init_token = init_token
        self.eos_token = eos_token
        self.unk_token = unk_token
        self.fix_length = fix_length
        self.dtype = dtype
        self.preprocessing = preprocessing
        self.postprocessing = postprocessing
        self.lower = lower
        # store params to construct tokenizer for serialization
        # in case the tokenizer isn't picklable (e.g. spacy)
        self.tokenizer_args = (tokenize, tokenizer_language)
        self.tokenize = get_tokenizer(tokenize, tokenizer_language)
        self.include_lengths = include_lengths
        self.batch_first = batch_first
        self.pad_token = pad_token if self.sequential else None
        self.pad_first = pad_first
        self.truncate_first = truncate_first
        try:
            self.stop_words = set(stop_words) if stop_words is not None else None
        except TypeError:
            raise ValueError("Stop words must be convertible to a set")
        self.is_target = is_target

    def __getstate__(self):
        str_type = dtype_to_attr(self.dtype)
        if is_tokenizer_serializable(*self.tokenizer_args):
            tokenize = self.tokenize
        else:
            # signal to restore in `__setstate__`
            tokenize = None
        attrs = {k: v for k, v in self.__dict__.items() if k not in self.ignore}
        attrs['dtype'] = str_type
        attrs['tokenize'] = tokenize

        return attrs

    def __setstate__(self, state):
        state['dtype'] = getattr(torch, state['dtype'])
        if not state['tokenize']:
            state['tokenize'] = get_tokenizer(*state['tokenizer_args'])
        self.__dict__.update(state)

    def __hash__(self):
        # we don't expect this to be called often
        return 42

    def __eq__(self, other):
        if not isinstance(other, RawField):
            return False

        return self.__dict__ == other.__dict__

    def preprocess(self, x):
        """Load a single example using this field, tokenizing if necessary.

        If the input is a Python 2 `str`, it will be converted to Unicode
        first. If `sequential=True`, it will be tokenized. Then the input
        will be optionally lowercased and passed to the user-provided
        `preprocessing` Pipeline."""
        if (six.PY2 and isinstance(x, six.string_types)
                and not isinstance(x, six.text_type)):
            x = Pipeline(lambda s: six.text_type(s, encoding='utf-8'))(x)
        if self.sequential and isinstance(x, six.text_type):
            x = self.tokenize(x.rstrip('\n'))
        if self.lower:
            x = Pipeline(six.text_type.lower)(x)
        if self.sequential and self.use_vocab and self.stop_words is not None:
            x = [w for w in x if w not in self.stop_words]
        if hasattr(self, "preprocessing") and self.preprocessing is not None:
            return self.preprocessing(x)
        else:
            return x

    def process(self, batch, device=None):
        """ Process a list of examples to create a torch.Tensor.

        Pad, numericalize, and postprocess a batch and create a tensor.

        Args:
            batch (list(object)): A list of object from a batch of examples.
        Returns:
            torch.autograd.Variable: Processed object given the input
            and custom postprocessing Pipeline.
        """
        padded = self.pad(batch)
        tensor = self.numericalize(padded, device=device)
        return tensor

    def pad(self, minibatch):
        """Pad a batch of examples using this field.

        Pads to self.fix_length if provided, otherwise pads to the length of
        the longest example in the batch. Prepends self.init_token and appends
        self.eos_token if those attributes are not None. Returns a tuple of the
        padded list and a list containing lengths of each example if
        `self.include_lengths` is `True` and `self.sequential` is `True`, else just
        returns the padded list. If `self.sequential` is `False`, no padding is applied.
        """
        minibatch = list(minibatch)
        if not self.sequential:
            return minibatch
        if self.fix_length is None:
            max_len = max(len(x) for x in minibatch)
        else:
            max_len = self.fix_length + (
                self.init_token, self.eos_token).count(None) - 2
        padded, lengths = [], []
        for x in minibatch:
            if self.pad_first:
                padded.append(
                    [self.pad_token] * max(0, max_len - len(x))
                    + ([] if self.init_token is None else [self.init_token])
                    + list(x[-max_len:] if self.truncate_first else x[:max_len])
                    + ([] if self.eos_token is None else [self.eos_token]))
            else:
                padded.append(
                    ([] if self.init_token is None else [self.init_token])
                    + list(x[-max_len:] if self.truncate_first else x[:max_len])
                    + ([] if self.eos_token is None else [self.eos_token])
                    + [self.pad_token] * max(0, max_len - len(x)))
            lengths.append(len(padded[-1]) - max(0, max_len - len(x)))
        if self.include_lengths:
            return (padded, lengths)
        return padded

    def build_vocab(self, *args, **kwargs):
        """Construct the Vocab object for this field from one or more datasets.

        Arguments:
            Positional arguments: Dataset objects or other iterable data
                sources from which to construct the Vocab object that
                represents the set of possible values for this field. If
                a Dataset object is provided, all columns corresponding
                to this field are used; individual columns can also be
                provided directly.
            Remaining keyword arguments: Passed to the constructor of Vocab.
        """
        counter = Counter()
        sources = []
        for arg in args:
            sources.append(arg)
        for data in sources:
            for x in data:
                if not self.sequential:
                    x = [x]
                try:
                    counter.update(x)
                except TypeError:
                    counter.update(chain.from_iterable(x))
        specials = list(OrderedDict.fromkeys(
            tok for tok in [self.unk_token, self.pad_token, self.init_token,
                            self.eos_token] + kwargs.pop('specials', [])
            if tok is not None))
        self.vocab = self.vocab_cls(counter, specials=specials, **kwargs)

    def numericalize(self, arr, device=None):
        """Turn a batch of examples that use this field into a Variable.

        If the field has include_lengths=True, a tensor of lengths will be
        included in the return value.

        Arguments:
            arr (List[List[str]], or tuple of (List[List[str]], List[int])):
                List of tokenized and padded examples, or tuple of List of
                tokenized and padded examples and List of lengths of each
                example if self.include_lengths is True.
            device (str or torch.device): A string or instance of `torch.device`
                specifying which device the Variables are going to be created on.
                If left as default, the tensors will be created on cpu. Default: None.
        """
        if self.include_lengths and not isinstance(arr, tuple):
            raise ValueError("Field has include_lengths set to True, but "
                             "input data is not a tuple of "
                             "(data batch, batch lengths).")
        if isinstance(arr, tuple):
            arr, lengths = arr
            lengths = torch.tensor(lengths, dtype=self.dtype, device=device)

        if self.use_vocab:
            if self.sequential:
                arr = [[self.vocab.stoi[x] for x in ex] for ex in arr]
            else:
                arr = [self.vocab.stoi[x] for x in arr]

            if self.postprocessing is not None:
                arr = self.postprocessing(arr, self.vocab)
        else:
            if self.dtype not in self.dtypes:
                raise ValueError(
                    "Specified Field dtype {} can not be used with "
                    "use_vocab=False because we do not know how to numericalize it. "
                    "Please raise an issue at "
                    "https://github.com/pytorch/text/issues".format(self.dtype))
            numericalization_func = self.dtypes[self.dtype]
            # It doesn't make sense to explicitly coerce to a numeric type if
            # the data is sequential, since it's unclear how to coerce padding tokens
            # to a numeric type.
            if not self.sequential:
                arr = [numericalization_func(x) if isinstance(x, six.string_types)
                       else x for x in arr]
            if self.postprocessing is not None:
                arr = self.postprocessing(arr, None)

        var = torch.tensor(arr, dtype=self.dtype, device=device)

        if self.sequential and not self.batch_first:
            var.t_()
        if self.sequential:
            var = var.contiguous()

        if self.include_lengths:
            return var, lengths
        return var


class NestedField(Field):
    """A nested field.

    A nested field holds another field (called *nesting field*), accepts an untokenized
    string or a list string tokens and groups and treats them as one field as described
    by the nesting field. Every token will be preprocessed, padded, etc. in the manner
    specified by the nesting field. Note that this means a nested field always has
    ``sequential=True``. The two fields' vocabularies will be shared. Their
    numericalization results will be stacked into a single tensor. And NestedField will
    share the same include_lengths with nesting_field, so one shouldn't specify the
    include_lengths in the nesting_field. This field is
    primarily used to implement character embeddings. See ``tests/data/test_field.py``
    for examples on how to use this field.

    Arguments:
        nesting_field (Field): A field contained in this nested field.
        use_vocab (bool): Whether to use a Vocab object. If False, the data in this
            field should already be numerical. Default: ``True``.
        init_token (str): A token that will be prepended to every example using this
            field, or None for no initial token. Default: ``None``.
        eos_token (str): A token that will be appended to every example using this
            field, or None for no end-of-sentence token. Default: ``None``.
        fix_length (int): A fixed length that all examples using this field will be
            padded to, or ``None`` for flexible sequence lengths. Default: ``None``.
        dtype: The torch.dtype class that represents a batch of examples
            of this kind of data. Default: ``torch.long``.
        preprocessing (Pipeline): The Pipeline that will be applied to examples
            using this field after tokenizing but before numericalizing. Many
            Datasets replace this attribute with a custom preprocessor.
            Default: ``None``.
        postprocessing (Pipeline): A Pipeline that will be applied to examples using
            this field after numericalizing but before the numbers are turned
            into a Tensor. The pipeline function takes the batch as a list, and
            the field's Vocab. Default: ``None``.
        include_lengths: Whether to return a tuple of a padded minibatch and
            a list containing the lengths of each examples, or just a padded
            minibatch. Default: False.
        tokenize: The function used to tokenize strings using this field into
            sequential examples. If "spacy", the SpaCy tokenizer is
            used. If a non-serializable function is passed as an argument,
            the field will not be able to be serialized. Default: string.split.
        tokenizer_language: The language of the tokenizer to be constructed.
            Various languages currently supported only in SpaCy.
        pad_token (str): The string token used as padding. If ``nesting_field`` is
            sequential, this will be set to its ``pad_token``. Default: ``"<pad>"``.
        pad_first (bool): Do the padding of the sequence at the beginning. Default:
            ``False``.
    """

    def __init__(self, nesting_field, use_vocab=True, init_token=None, eos_token=None,
                 fix_length=None, dtype=torch.long, preprocessing=None,
                 postprocessing=None, tokenize=None, tokenizer_language='en',
                 include_lengths=False, pad_token='<pad>',
                 pad_first=False, truncate_first=False):
        if isinstance(nesting_field, NestedField):
            raise ValueError('nesting field must not be another NestedField')
        if nesting_field.include_lengths:
            raise ValueError('nesting field cannot have include_lengths=True')

        if nesting_field.sequential:
            pad_token = nesting_field.pad_token
        super(NestedField, self).__init__(
            use_vocab=use_vocab,
            init_token=init_token,
            eos_token=eos_token,
            fix_length=fix_length,
            dtype=dtype,
            preprocessing=preprocessing,
            postprocessing=postprocessing,
            lower=nesting_field.lower,
            tokenize=tokenize,
            tokenizer_language=tokenizer_language,
            batch_first=True,
            pad_token=pad_token,
            unk_token=nesting_field.unk_token,
            pad_first=pad_first,
            truncate_first=truncate_first,
            include_lengths=include_lengths
        )
        self.nesting_field = nesting_field
        # in case the user forget to do that
        self.nesting_field.batch_first = True

    def preprocess(self, xs):
        """Preprocess a single example.

        Firstly, tokenization and the supplied preprocessing pipeline is applied. Since
        this field is always sequential, the result is a list. Then, each element of
        the list is preprocessed using ``self.nesting_field.preprocess`` and the resulting
        list is returned.

        Arguments:
            xs (list or str): The input to preprocess.

        Returns:
            list: The preprocessed list.
        """
        return [self.nesting_field.preprocess(x)
                for x in super(NestedField, self).preprocess(xs)]

    def pad(self, minibatch):
        """Pad a batch of examples using this field.

        If ``self.nesting_field.sequential`` is ``False``, each example in the batch must
        be a list of string tokens, and pads them as if by a ``Field`` with
        ``sequential=True``. Otherwise, each example must be a list of list of tokens.
        Using ``self.nesting_field``, pads the list of tokens to
        ``self.nesting_field.fix_length`` if provided, or otherwise to the length of the
        longest list of tokens in the batch. Next, using this field, pads the result by
        filling short examples with ``self.nesting_field.pad_token``.

        Example:
            >>> import pprint
            >>> pp = pprint.PrettyPrinter(indent=4)
            >>>
            >>> nesting_field = Field(pad_token='<c>', init_token='<w>', eos_token='</w>')
            >>> field = NestedField(nesting_field, init_token='<s>', eos_token='</s>')
            >>> minibatch = [
            ...     [list('john'), list('loves'), list('mary')],
            ...     [list('mary'), list('cries')],
            ... ]
            >>> padded = field.pad(minibatch)
            >>> pp.pprint(padded)
            [   [   ['<w>', '<s>', '</w>', '<c>', '<c>', '<c>', '<c>'],
                    ['<w>', 'j', 'o', 'h', 'n', '</w>', '<c>'],
                    ['<w>', 'l', 'o', 'v', 'e', 's', '</w>'],
                    ['<w>', 'm', 'a', 'r', 'y', '</w>', '<c>'],
                    ['<w>', '</s>', '</w>', '<c>', '<c>', '<c>', '<c>']],
                [   ['<w>', '<s>', '</w>', '<c>', '<c>', '<c>', '<c>'],
                    ['<w>', 'm', 'a', 'r', 'y', '</w>', '<c>'],
                    ['<w>', 'c', 'r', 'i', 'e', 's', '</w>'],
                    ['<w>', '</s>', '</w>', '<c>', '<c>', '<c>', '<c>'],
                    ['<c>', '<c>', '<c>', '<c>', '<c>', '<c>', '<c>']]]

        Arguments:
            minibatch (list): Each element is a list of string if
                ``self.nesting_field.sequential`` is ``False``, a list of list of string
                otherwise.

        Returns:
            list: The padded minibatch. or (padded, sentence_lens, word_lengths)
        """
        minibatch = list(minibatch)
        if not self.nesting_field.sequential:
            return super(NestedField, self).pad(minibatch)

        # Save values of attributes to be monkeypatched
        old_pad_token = self.pad_token
        old_init_token = self.init_token
        old_eos_token = self.eos_token
        old_fix_len = self.nesting_field.fix_length
        # Monkeypatch the attributes
        if self.nesting_field.fix_length is None:
            max_len = max(len(xs) for ex in minibatch for xs in ex)
            fix_len = max_len + 2 - (self.nesting_field.init_token,
                                     self.nesting_field.eos_token).count(None)
            self.nesting_field.fix_length = fix_len
        self.pad_token = [self.pad_token] * self.nesting_field.fix_length
        if self.init_token is not None:
            # self.init_token = self.nesting_field.pad([[self.init_token]])[0]
            self.init_token = [self.init_token]
        if self.eos_token is not None:
            # self.eos_token = self.nesting_field.pad([[self.eos_token]])[0]
            self.eos_token = [self.eos_token]
        # Do padding
        old_include_lengths = self.include_lengths
        self.include_lengths = True
        self.nesting_field.include_lengths = True
        padded, sentence_lengths = super(NestedField, self).pad(minibatch)
        padded_with_lengths = [self.nesting_field.pad(ex) for ex in padded]
        word_lengths = []
        final_padded = []
        max_sen_len = len(padded[0])
        for (pad, lens), sentence_len in zip(padded_with_lengths, sentence_lengths):
            if sentence_len == max_sen_len:
                lens = lens
                pad = pad
            elif self.pad_first:
                lens[:(max_sen_len - sentence_len)] = (
                    [0] * (max_sen_len - sentence_len))
                pad[:(max_sen_len - sentence_len)] = (
                    [self.pad_token] * (max_sen_len - sentence_len))
            else:
                lens[-(max_sen_len - sentence_len):] = (
                    [0] * (max_sen_len - sentence_len))
                pad[-(max_sen_len - sentence_len):] = (
                    [self.pad_token] * (max_sen_len - sentence_len))
            word_lengths.append(lens)
            final_padded.append(pad)
        padded = final_padded

        # Restore monkeypatched attributes
        self.nesting_field.fix_length = old_fix_len
        self.pad_token = old_pad_token
        self.init_token = old_init_token
        self.eos_token = old_eos_token
        self.include_lengths = old_include_lengths
        if self.include_lengths:
            return padded, sentence_lengths, word_lengths
        return padded

    def build_vocab(self, *args, **kwargs):
        """Construct the Vocab object for nesting field and combine it with this field's vocab.

        Arguments:
            Positional arguments: Dataset objects or other iterable data
                sources from which to construct the Vocab object that
                represents the set of possible values for the nesting field. If
                a Dataset object is provided, all columns corresponding
                to this field are used; individual columns can also be
                provided directly.
            Remaining keyword arguments: Passed to the constructor of Vocab.
        """
        sources = []
        for arg in args:
            sources.append(arg)

        flattened = []
        for source in sources:
            flattened.extend(source)
        old_vectors = None
        old_unk_init = None
        old_vectors_cache = None
        if "vectors" in kwargs.keys():
            old_vectors = kwargs["vectors"]
            kwargs["vectors"] = None
        if "unk_init" in kwargs.keys():
            old_unk_init = kwargs["unk_init"]
            kwargs["unk_init"] = None
        if "vectors_cache" in kwargs.keys():
            old_vectors_cache = kwargs["vectors_cache"]
            kwargs["vectors_cache"] = None
        # just build vocab and does not load vector
        self.nesting_field.build_vocab(*flattened, **kwargs)
        super(NestedField, self).build_vocab()
        self.vocab.extend(self.nesting_field.vocab)
        self.vocab.freqs = self.nesting_field.vocab.freqs.copy()
        if old_vectors is not None:
            self.vocab.load_vectors(old_vectors,
                                    unk_init=old_unk_init, cache=old_vectors_cache)

        self.nesting_field.vocab = self.vocab

    def numericalize(self, arrs, device=None):
        """Convert a padded minibatch into a variable tensor.

        Each item in the minibatch will be numericalized independently and the resulting
        tensors will be stacked at the first dimension.

        Arguments:
            arr (List[List[str]]): List of tokenized and padded examples.
            device (str or torch.device): A string or instance of `torch.device`
                specifying which device the Variables are going to be created on.
                If left as default, the tensors will be created on cpu. Default: None.
        """
        numericalized = []
        self.nesting_field.include_lengths = False
        if self.include_lengths:
            arrs, sentence_lengths, word_lengths = arrs

        for arr in arrs:
            numericalized_ex = self.nesting_field.numericalize(
                arr, device=device)
            numericalized.append(numericalized_ex)
        padded_batch = torch.stack(numericalized)

        self.nesting_field.include_lengths = True
        if self.include_lengths:
            sentence_lengths = \
                torch.tensor(sentence_lengths, dtype=self.dtype, device=device)
            word_lengths = torch.tensor(word_lengths, dtype=self.dtype, device=device)
            return (padded_batch, sentence_lengths, word_lengths)
        return padded_batch