Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# coding=utf-8 | |
import torch | |
import torch.nn as nn | |
from model.module.encoder import Encoder | |
from model.module.transformer import Decoder | |
from model.head.node_centric_head import NodeCentricHead | |
from model.head.labeled_edge_head import LabeledEdgeHead | |
from model.head.sequential_head import SequentialHead | |
from utility.utils import create_padding_mask | |
class Model(nn.Module): | |
def __init__(self, dataset, args, initialize=True): | |
super(Model, self).__init__() | |
self.encoder = Encoder(args, dataset) | |
if args.n_layers > 0: | |
self.decoder = Decoder(args) | |
else: | |
self.decoder = lambda x, *args: x # identity function, which ignores all arguments except the first one | |
if args.graph_mode == "sequential": | |
self.head = SequentialHead(dataset, args, initialize) | |
elif args.graph_mode == "node-centric": | |
self.head = NodeCentricHead(dataset, args, initialize) | |
elif args.graph_mode == "labeled-edge": | |
self.head = LabeledEdgeHead(dataset, args, initialize) | |
self.query_length = args.query_length | |
self.dataset = dataset | |
self.args = args | |
def forward(self, batch, inference=False, **kwargs): | |
every_input, word_lens = batch["every_input"] | |
decoder_lens = self.query_length * word_lens | |
batch_size, input_len = every_input.size(0), every_input.size(1) | |
device = every_input.device | |
encoder_mask = create_padding_mask(batch_size, input_len, word_lens, device) | |
decoder_mask = create_padding_mask(batch_size, self.query_length * input_len, decoder_lens, device) | |
encoder_output, decoder_input = self.encoder(batch["input"], batch["char_form_input"], batch["input_scatter"], input_len) | |
decoder_output = self.decoder(decoder_input, encoder_output, decoder_mask, encoder_mask) | |
if inference: | |
return self.head.predict(encoder_output, decoder_output, encoder_mask, decoder_mask, batch) | |
else: | |
return self.head(encoder_output, decoder_output, encoder_mask, decoder_mask, batch) | |
def get_params_for_optimizer(self, args): | |
encoder_decay, encoder_no_decay = self.get_encoder_parameters(args.n_encoder_layers) | |
decoder_decay, decoder_no_decay = self.get_decoder_parameters() | |
parameters = [{"params": p, "weight_decay": args.encoder_weight_decay} for p in encoder_decay] | |
parameters += [{"params": p, "weight_decay": 0.0} for p in encoder_no_decay] | |
parameters += [ | |
{"params": decoder_decay, "weight_decay": args.decoder_weight_decay}, | |
{"params": decoder_no_decay, "weight_decay": 0.0}, | |
] | |
return parameters | |
def get_decoder_parameters(self): | |
no_decay = ["bias", "LayerNorm.weight", "_norm.weight"] | |
decay_params = (p for name, p in self.named_parameters() if not any(nd in name for nd in no_decay) and not name.startswith("encoder.bert") and p.requires_grad) | |
no_decay_params = (p for name, p in self.named_parameters() if any(nd in name for nd in no_decay) and not name.startswith("encoder.bert") and p.requires_grad) | |
return decay_params, no_decay_params | |
def get_encoder_parameters(self, n_layers): | |
no_decay = ["bias", "LayerNorm.weight", "_norm.weight"] | |
decay_params = [ | |
[p for name, p in self.named_parameters() if not any(nd in name for nd in no_decay) and name.startswith(f"encoder.bert.encoder.layer.{n_layers - 1 - i}.") and p.requires_grad] for i in range(n_layers) | |
] | |
no_decay_params = [ | |
[p for name, p in self.named_parameters() if any(nd in name for nd in no_decay) and name.startswith(f"encoder.bert.encoder.layer.{n_layers - 1 - i}.") and p.requires_grad] for i in range(n_layers) | |
] | |
return decay_params, no_decay_params | |