Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# coding=utf-8 | |
from utility.loading_bar import LoadingBar | |
import time | |
import torch | |
class Log: | |
def __init__(self, dataset, model, optimizer, args, directory, log_each: int, initial_epoch=-1, log_wandb=True): | |
self.dataset = dataset | |
self.model = model | |
self.args = args | |
self.optimizer = optimizer | |
self.loading_bar = LoadingBar(length=27) | |
self.best_f1_score = 0.0 | |
self.log_each = log_each | |
self.epoch = initial_epoch | |
self.log_wandb = log_wandb | |
if self.log_wandb: | |
globals()["wandb"] = __import__("wandb") # ugly way to not require wandb if not needed | |
self.directory = directory | |
self.evaluation_results = f"{directory}/results_{{0}}_{{1}}.json" | |
self.full_evaluation_results = f"{directory}/full_results_{{0}}_{{1}}.json" | |
self.best_full_evaluation_results = f"{directory}/best_full_results_{{0}}_{{1}}.json" | |
self.result_history = {epoch: {} for epoch in range(args.epochs)} | |
self.best_checkpoint_filename = f"{self.directory}/best_checkpoint.h5" | |
self.last_checkpoint_filename = f"{self.directory}/last_checkpoint.h5" | |
self.step = 0 | |
self.total_batch_size = 0 | |
self.flushed = True | |
def train(self, len_dataset: int) -> None: | |
self.flush() | |
self.epoch += 1 | |
if self.epoch == 0: | |
self._print_header() | |
self.is_train = True | |
self._reset(len_dataset) | |
def eval(self, len_dataset: int) -> None: | |
self.flush() | |
self.is_train = False | |
self._reset(len_dataset) | |
def __call__(self, batch_size, losses, grad_norm: float = None, learning_rates: float = None,) -> None: | |
if self.is_train: | |
self._train_step(batch_size, losses, grad_norm, learning_rates) | |
else: | |
self._eval_step(batch_size, losses) | |
self.flushed = False | |
def flush(self) -> None: | |
if self.flushed: | |
return | |
self.flushed = True | |
if self.is_train: | |
print(f"\rβ{self.epoch:12d} β{self._time():>12} β", end="", flush=True) | |
else: | |
if self.losses is not None and self.log_wandb: | |
dictionary = {f"validation/{key}": value / self.step for key, value in self.losses.items()} | |
dictionary["epoch"] = self.epoch | |
wandb.log(dictionary) | |
self.losses = None | |
# self._save_model(save_as_best=False, performance=None) | |
def log_evaluation(self, scores, mode, epoch): | |
f1_score = scores["sentiment_tuple/f1"] | |
if self.log_wandb: | |
scores = {f"{mode}/{k}": v for k, v in scores.items()} | |
wandb.log({ | |
"epoch": epoch, | |
**scores | |
}) | |
if mode == "validation" and f1_score > self.best_f1_score: | |
if self.log_wandb: | |
wandb.run.summary["best sentiment tuple f1 score"] = f1_score | |
self.best_f1_score = f1_score | |
self._save_model(save_as_best=True, f1_score=f1_score) | |
def _save_model(self, save_as_best: bool, f1_score: float): | |
if not self.args.save_checkpoints: | |
return | |
state = { | |
"epoch": self.epoch, | |
"dataset": self.dataset.state_dict(), | |
"f1_score": f1_score, | |
"model": self.model.state_dict(), | |
"optimizer": self.optimizer.state_dict(), | |
"args": self.args.state_dict(), | |
} | |
filename = self.best_checkpoint_filename if save_as_best else self.last_checkpoint_filename | |
torch.save(state, filename) | |
if self.log_wandb: | |
wandb.save(filename) | |
def _train_step(self, batch_size, losses, grad_norm: float, learning_rates) -> None: | |
self.total_batch_size += batch_size | |
self.step += 1 | |
if self.losses is None: | |
self.losses = losses | |
else: | |
for key, values in losses.items(): | |
if key not in self.losses: | |
self.losses[key] = losses[key] | |
continue | |
self.losses[key] += losses[key] | |
if self.step % self.log_each == 0: | |
progress = self.total_batch_size / self.len_dataset | |
print(f"\rβ{self.epoch:12d} β{self._time():>12} {self.loading_bar(progress)}", end="", flush=True) | |
if self.log_wandb: | |
dictionary = {f"train/{key}" if not key.startswith("weight/") else key: value / self.log_each for key, value in self.losses.items()} | |
dictionary["epoch"] = self.epoch | |
dictionary["learning_rate/encoder"] = learning_rates[0] | |
dictionary["learning_rate/decoder"] = learning_rates[-2] | |
dictionary["learning_rate/grad_norm"] = learning_rates[-1] | |
dictionary["gradient norm"] = grad_norm | |
wandb.log(dictionary) | |
self.losses = None | |
def _eval_step(self, batch_size, losses) -> None: | |
self.step += 1 | |
if self.losses is None: | |
self.losses = losses | |
else: | |
for key, values in losses.items(): | |
if key not in self.losses: | |
self.losses[key] = losses[key] | |
continue | |
self.losses[key] += losses[key] | |
def _reset(self, len_dataset: int) -> None: | |
self.start_time = time.time() | |
self.step = 0 | |
self.total_batch_size = 0 | |
self.len_dataset = len_dataset | |
self.losses = None | |
def _time(self) -> str: | |
time_seconds = int(time.time() - self.start_time) | |
return f"{time_seconds // 60:02d}:{time_seconds % 60:02d} min" | |
def _print_header(self) -> None: | |
print(f"ββββββββββββββββ³ββββΈSβΊβΈEβΊβΈMβΊβΈAβΊβΈNβΊβΈTβΊβΈIβΊβΈSβΊβΈKβΊβββββββββββββββ") | |
print(f"β β β· β") | |
print(f"β epoch β elapsed β progress bar β") | |
print(f"β ββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββ¨") | |