ssa-perin / model /module /bilinear.py
larkkin's picture
Add application code and models, update README
8044721
raw
history blame
1.49 kB
# from https://github.com/NLPInBLCU/BiaffineDependencyParsing/blob/master/modules/biaffine.py
import torch
import torch.nn as nn
class Bilinear(nn.Module):
"""
使用版本
A bilinear module that deals with broadcasting for efficient memory usage.
Input: tensors of sizes (N x L1 x D1) and (N x L2 x D2)
Output: tensor of size (N x L1 x L2 x O)"""
def __init__(self, input1_size, input2_size, output_size, bias=True):
super(Bilinear, self).__init__()
self.input1_size = input1_size
self.input2_size = input2_size
self.output_size = output_size
self.weight = nn.Parameter(torch.Tensor(input1_size, input2_size, output_size))
self.bias = nn.Parameter(torch.Tensor(output_size)) if bias else None
self.reset_parameters()
def reset_parameters(self):
nn.init.zeros_(self.weight)
def forward(self, input1, input2):
input1_size = list(input1.size())
input2_size = list(input2.size())
intermediate = torch.mm(input1.view(-1, input1_size[-1]), self.weight.view(-1, self.input2_size * self.output_size),)
input2 = input2.transpose(1, 2)
output = intermediate.view(input1_size[0], input1_size[1] * self.output_size, input2_size[2]).bmm(input2)
output = output.view(input1_size[0], input1_size[1], self.output_size, input2_size[1]).transpose(2, 3)
if self.bias is not None:
output = output + self.bias
return output