Spaces:
Runtime error
Runtime error
# from https://github.com/NLPInBLCU/BiaffineDependencyParsing/blob/master/modules/biaffine.py | |
import torch | |
import torch.nn as nn | |
class Bilinear(nn.Module): | |
""" | |
使用版本 | |
A bilinear module that deals with broadcasting for efficient memory usage. | |
Input: tensors of sizes (N x L1 x D1) and (N x L2 x D2) | |
Output: tensor of size (N x L1 x L2 x O)""" | |
def __init__(self, input1_size, input2_size, output_size, bias=True): | |
super(Bilinear, self).__init__() | |
self.input1_size = input1_size | |
self.input2_size = input2_size | |
self.output_size = output_size | |
self.weight = nn.Parameter(torch.Tensor(input1_size, input2_size, output_size)) | |
self.bias = nn.Parameter(torch.Tensor(output_size)) if bias else None | |
self.reset_parameters() | |
def reset_parameters(self): | |
nn.init.zeros_(self.weight) | |
def forward(self, input1, input2): | |
input1_size = list(input1.size()) | |
input2_size = list(input2.size()) | |
intermediate = torch.mm(input1.view(-1, input1_size[-1]), self.weight.view(-1, self.input2_size * self.output_size),) | |
input2 = input2.transpose(1, 2) | |
output = intermediate.view(input1_size[0], input1_size[1] * self.output_size, input2_size[2]).bmm(input2) | |
output = output.view(input1_size[0], input1_size[1], self.output_size, input2_size[1]).transpose(2, 3) | |
if self.bias is not None: | |
output = output + self.bias | |
return output | |