erikve commited on
Commit
37989cf
1 Parent(s): 37d1022

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -21
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Sentiment Analysis
3
  emoji: 🤔
4
  colorFrom: purple
5
  colorTo: yellow
@@ -8,23 +8,3 @@ sdk_version: 3.1.7
8
  app_file: app.py
9
  pinned: false
10
  ---
11
-
12
- This space provides a gradio demo of a [pretrained model](https://huggingface.co/ltg/ssa-perin) (with an easy-to-run wrapper) for structured sentiment analysis (SSA) of Norwegian text, trained on the [NoReC_fine](https://github.com/ltgoslo/norec_fine) dataset. It implements a method described in the paper [Direct parsing to sentiment graphs](https://aclanthology.org/2022.acl-short.51/) by Samuel et al. 2022.
13
-
14
- The model will attempt to identify the following components for a given sentence it deems to be sentiment-bearing: _source expressions_ (the opinion holder), _target expressions_ (what the opinion is directed towards), _polar expressions_ (the part of the text indicating that an opinion is expressed), and finally the _polarity_ (positive or negative).
15
-
16
- See the code below for an example of how you can use the model yourself for predicting such sentiment tuples (along with character offsets in the text):
17
-
18
- ```python
19
- >>> import model_wrapper
20
- >>> model = model_wrapper.PredictionModel()
21
- >>> model.predict(['vi liker svart kaffe'])
22
- [{'sent_id': '0',
23
- 'text': 'vi liker svart kaffe',
24
- 'opinions': [{'Source': [['vi'], ['0:2']],
25
- 'Target': [['svart', 'kaffe'], ['9:14', '15:20']],
26
- 'Polar_expression': [['liker'], ['3:8']],
27
- 'Polarity': 'Positive'}]}]
28
- ```
29
-
30
- To download the model and find more in-depth documentation, please see (https://huggingface.co/ltg/ssa-perin)[https://huggingface.co/ltg/ssa-perin]
 
1
  ---
2
+ title: Structured Sentiment Analysis for Norwegian
3
  emoji: 🤔
4
  colorFrom: purple
5
  colorTo: yellow
 
8
  app_file: app.py
9
  pinned: false
10
  ---