erikve commited on
Commit
e2897e4
1 Parent(s): aebce5f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -20
app.py CHANGED
@@ -36,29 +36,19 @@ def predict(text):
36
 
37
 
38
  markdown_text = '''
 
 
 
 
39
  <br>
40
- This space provides a gradio demo of a <a href="https://huggingface.co/ltg/ssa-perin">pretrained model</a> (with an easy-to-run wrapper) for structured sentiment analysis (SSA) of Norwegian text, trained on the [NoReC_fine](https://github.com/ltgoslo/norec_fine) dataset. It implements a method described in the paper [Direct parsing to sentiment graphs](https://aclanthology.org/2022.acl-short.51/) by Samuel et al. 2022.
41
-
42
  The model will attempt to identify the following components for a given sentence it deems to be sentiment-bearing: _source expressions_ (the opinion holder), _target expressions_ (what the opinion is directed towards), _polar expressions_ (the part of the text indicating that an opinion is expressed), and finally the _polarity_ (positive or negative).
43
-
44
- See the code below for an example of how you can use the model yourself for predicting such sentiment tuples (along with character offsets in the text):
45
-
46
- ```python
47
- >>> import model_wrapper
48
- >>> model = model_wrapper.PredictionModel()
49
- >>> model.predict(['vi liker svart kaffe'])
50
- [{'sent_id': '0',
51
- 'text': 'vi liker svart kaffe',
52
- 'opinions': [{'Source': [['vi'], ['0:2']],
53
- 'Target': [['svart', 'kaffe'], ['9:14', '15:20']],
54
- 'Polar_expression': [['liker'], ['3:8']],
55
- 'Polarity': 'Positive'}]}]
56
- ```
57
-
58
- To download the model and find more in-depth documentation, please see https://huggingface.co/ltg/ssa-perin
59
  '''
60
 
61
  with gr.Blocks() as demo:
 
62
  with gr.Row() as row:
63
  text_input = gr.Textbox(label="input")
64
  text_output = gr.Textbox(label="output")
@@ -67,7 +57,5 @@ with gr.Blocks() as demo:
67
 
68
  text_button.click(fn=predict, inputs=text_input, outputs=text_output)
69
 
70
- gr.Markdown(markdown_text)
71
-
72
 
73
  demo.launch()
 
36
 
37
 
38
  markdown_text = '''
39
+ <h1>Structured Sentiment Analysis for Norwegian</h1>
40
+ <p align="left">
41
+ <br>
42
+ This space provides a gradio demo of a <a href="https://huggingface.co/ltg/ssa-perin">pretrained model</a> for structured sentiment analysis (SSA) of Norwegian text, trained on the [NoReC_fine](https://github.com/ltgoslo/norec_fine) dataset by the <a href"https://www.mn.uio.no/ifi/english/research/groups/ltg/">Language Technology Group</a> at the University of Oslo. It implements a method described in the paper <a href="https://aclanthology.org/2022.acl-short.51/">Direct parsing to sentiment graphs</a> by Samuel et al. 2022.
43
  <br>
 
 
44
  The model will attempt to identify the following components for a given sentence it deems to be sentiment-bearing: _source expressions_ (the opinion holder), _target expressions_ (what the opinion is directed towards), _polar expressions_ (the part of the text indicating that an opinion is expressed), and finally the _polarity_ (positive or negative).
45
+ <br>
46
+ To download the model and find more in-depth documentation, please see <a href="https://huggingface.co/ltg/ssa-perin">https://huggingface.co/ltg/ssa-perin</a>
47
+ </p>
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  '''
49
 
50
  with gr.Blocks() as demo:
51
+ gr.Markdown(markdown_text)
52
  with gr.Row() as row:
53
  text_input = gr.Textbox(label="input")
54
  text_output = gr.Textbox(label="output")
 
57
 
58
  text_button.click(fn=predict, inputs=text_input, outputs=text_output)
59
 
 
 
60
 
61
  demo.launch()