Spaces:
Runtime error
Runtime error
Add model wrapper and gradio app
Browse files- app.py +76 -0
- model_wrapper.py +111 -0
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import model_wrapper
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
model = model_wrapper.PredictionModel()
|
7 |
+
|
8 |
+
def pretty_print_opinion(opinion_dict):
|
9 |
+
res = []
|
10 |
+
maxlen = max([len(key) for key in opinion_dict.keys()]) + 2
|
11 |
+
maxlen = 0
|
12 |
+
for key, value in opinion_dict.items():
|
13 |
+
if key == 'Polarity':
|
14 |
+
res.append(f'{(key + ":").ljust(maxlen)} {value}')
|
15 |
+
else:
|
16 |
+
res.append(f'{(key + ":").ljust(maxlen)} \'{" ".join(value[0])}\'')
|
17 |
+
return '\n'.join(res) + '\n'
|
18 |
+
|
19 |
+
|
20 |
+
def predict(text):
|
21 |
+
predictions = model.predict([text])
|
22 |
+
prediction = predictions[0]
|
23 |
+
results = []
|
24 |
+
if not prediction['opinions']:
|
25 |
+
return 'No opinions detected'
|
26 |
+
for opinion in prediction['opinions']:
|
27 |
+
results.append(pretty_print_opinion(opinion))
|
28 |
+
|
29 |
+
return '\n'.join(results)
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
markdown_text = '''
|
34 |
+
<br>
|
35 |
+
<br>
|
36 |
+
This space provides a gradio demo and an easy-to-run wrapper of the pre-trained model for structured sentiment analysis in Norwegian language, pre-trained on the [NoReC dataset](https://huggingface.co/datasets/norec).
|
37 |
+
This model is an implementation of the paper "Direct parsing to sentiment graphs" (Samuel _et al._, ACL 2022). The main repository that also contains the scripts for training the model, can be found on the project [github](https://github.com/jerbarnes/direct_parsing_to_sent_graph).
|
38 |
+
|
39 |
+
The current model uses the 'labeled-edge' graph encoding, and achieves the following results on the NoReC dataset:
|
40 |
+
|
41 |
+
| Unlabeled sentiment tuple F1 | Target F1 | Relative polarity precision |
|
42 |
+
|:----------------------------:|:----------:|:---------------------------:|
|
43 |
+
| 0.393 | 0.468 | 0.939 |
|
44 |
+
|
45 |
+
|
46 |
+
The model can be easily used for predicting sentiment tuples as follows:
|
47 |
+
|
48 |
+
```python
|
49 |
+
>>> import model_wrapper
|
50 |
+
>>> model = model_wrapper.PredictionModel()
|
51 |
+
>>> model.predict(['vi liker svart kaffe'])
|
52 |
+
[{'sent_id': '0',
|
53 |
+
'text': 'vi liker svart kaffe',
|
54 |
+
'opinions': [{'Source': [['vi'], ['0:2']],
|
55 |
+
'Target': [['svart', 'kaffe'], ['9:14', '15:20']],
|
56 |
+
'Polar_expression': [['liker'], ['3:8']],
|
57 |
+
'Polarity': 'Positive'}]}]
|
58 |
+
```
|
59 |
+
'''
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
with gr.Blocks() as demo:
|
64 |
+
with gr.Row(equal_height=False) as row:
|
65 |
+
text_input = gr.Textbox(label="input")
|
66 |
+
text_output = gr.Textbox(label="output")
|
67 |
+
with gr.Row(scale=4) as row:
|
68 |
+
text_button = gr.Button("submit").style(full_width=True)
|
69 |
+
|
70 |
+
text_button.click(fn=predict, inputs=text_input, outputs=text_output)
|
71 |
+
|
72 |
+
gr.Markdown(markdown_text)
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
demo.launch()
|
model_wrapper.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import tempfile
|
4 |
+
import sys
|
5 |
+
import datetime
|
6 |
+
import re
|
7 |
+
import string
|
8 |
+
sys.path.append('mtool')
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from model.model import Model
|
13 |
+
from data.dataset import Dataset
|
14 |
+
from config.params import Params
|
15 |
+
from utility.initialize import initialize
|
16 |
+
from data.batch import Batch
|
17 |
+
from mtool.main import main as mtool_main
|
18 |
+
|
19 |
+
|
20 |
+
from tqdm import tqdm
|
21 |
+
|
22 |
+
class PredictionModel:
|
23 |
+
def __init__(self, checkpoint_path=os.path.join('models', 'checkpoint.bin'), default_mrp_path=os.path.join('models', 'default.mrp'), verbose=False):
|
24 |
+
self.verbose = verbose
|
25 |
+
self.checkpoint = torch.load('./models/checkpoint.bin', map_location=torch.device('cpu'))
|
26 |
+
self.args = Params().load_state_dict(self.checkpoint['params'])
|
27 |
+
self.args.log_wandb = False
|
28 |
+
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
29 |
+
|
30 |
+
self.args.training_data = default_mrp_path
|
31 |
+
self.args.validation_data = default_mrp_path
|
32 |
+
self.args.test_data = default_mrp_path
|
33 |
+
self.args.only_train = False
|
34 |
+
self.args.encoder = os.path.join('models', 'encoder')
|
35 |
+
initialize(self.args, init_wandb=False)
|
36 |
+
self.dataset = Dataset(self.args, verbose=False)
|
37 |
+
self.model = Model(self.dataset, self.args).to(self.device)
|
38 |
+
self.model.load_state_dict(self.checkpoint["model"])
|
39 |
+
self.model.eval()
|
40 |
+
|
41 |
+
|
42 |
+
def _mrp_to_text(self, mrp_list, graph_mode='labeled-edge'):
|
43 |
+
framework = 'norec'
|
44 |
+
with tempfile.NamedTemporaryFile(delete=False, mode='w') as output_text_file:
|
45 |
+
output_text_filename = output_text_file.name
|
46 |
+
|
47 |
+
with tempfile.NamedTemporaryFile(delete=False, mode='w') as mrp_file:
|
48 |
+
line = '\n'.join([json.dumps(entry) for entry in mrp_list])
|
49 |
+
mrp_file.write(line)
|
50 |
+
mrp_filename = mrp_file.name
|
51 |
+
|
52 |
+
if graph_mode == 'labeled-edge':
|
53 |
+
mtool_main([
|
54 |
+
'--strings',
|
55 |
+
'--ids',
|
56 |
+
'--read', 'mrp',
|
57 |
+
'--write', framework,
|
58 |
+
mrp_filename, output_text_filename
|
59 |
+
])
|
60 |
+
elif graph_mode == 'node-centric':
|
61 |
+
mtool_main([
|
62 |
+
'--node_centric',
|
63 |
+
'--strings',
|
64 |
+
'--ids',
|
65 |
+
'--read', 'mrp',
|
66 |
+
'--write', framework,
|
67 |
+
mrp_filename, output_text_filename
|
68 |
+
])
|
69 |
+
else:
|
70 |
+
raise Exception(f'Unknown graph mode: {graph_mode}')
|
71 |
+
|
72 |
+
with open(output_text_filename) as f:
|
73 |
+
texts = json.load(f)
|
74 |
+
|
75 |
+
os.unlink(output_text_filename)
|
76 |
+
os.unlink(mrp_filename)
|
77 |
+
|
78 |
+
return texts
|
79 |
+
|
80 |
+
|
81 |
+
def clean_texts(self, texts):
|
82 |
+
punctuation = ''.join([f'\\{s}' for s in string.punctuation])
|
83 |
+
texts = [re.sub(f'([{punctuation}])', ' \\1 ', t) for t in texts]
|
84 |
+
texts = [re.sub(r' +', ' ', t) for t in texts]
|
85 |
+
return texts
|
86 |
+
|
87 |
+
|
88 |
+
def _predict_to_mrp(self, texts, graph_mode='labeled-edge'):
|
89 |
+
texts = self.clean_texts(texts)
|
90 |
+
framework, language = self.args.framework, self.args.language
|
91 |
+
data = self.dataset.load_sentences(texts, self.args)
|
92 |
+
res_sentences = {f"{i}": {'input': sentence} for i, sentence in enumerate(texts)}
|
93 |
+
date_str = datetime.datetime.now().date().isoformat()
|
94 |
+
for key, value_dict in res_sentences.items():
|
95 |
+
value_dict['id'] = key
|
96 |
+
value_dict['time'] = date_str
|
97 |
+
value_dict['framework'], value_dict['language'] = framework, language
|
98 |
+
value_dict['nodes'], value_dict['edges'], value_dict['tops'] = [], [], []
|
99 |
+
for i, batch in enumerate(tqdm(data) if self.verbose else data):
|
100 |
+
with torch.no_grad():
|
101 |
+
predictions = self.model(Batch.to(batch, self.device), inference=True)
|
102 |
+
for prediction in predictions:
|
103 |
+
for key, value in prediction.items():
|
104 |
+
res_sentences[prediction['id']][key] = value
|
105 |
+
return res_sentences
|
106 |
+
|
107 |
+
|
108 |
+
def predict(self, text_list, graph_mode='labeled-edge', language='no'):
|
109 |
+
mrp_predictions = self._predict_to_mrp(text_list, graph_mode)
|
110 |
+
predictions = self._mrp_to_text(mrp_predictions.values(), graph_mode)
|
111 |
+
return predictions
|