Spaces:
Running
Running
File size: 10,869 Bytes
1286e81 cb23311 e70ffc1 7fa7a9c cb23311 12d3e1a b374298 12d3e1a 1286e81 e70ffc1 20e3edd 1286e81 b374298 1286e81 20e3edd 7fa7a9c 1286e81 12d3e1a 1286e81 7fa7a9c 1286e81 20e3edd 1286e81 20e3edd 1286e81 baeaaa5 7fa7a9c 1286e81 7fa7a9c e70ffc1 7fa7a9c e70ffc1 7fa7a9c e70ffc1 7fa7a9c e70ffc1 7fa7a9c e70ffc1 7fa7a9c baeaaa5 7fa7a9c e70ffc1 7fa7a9c e70ffc1 baeaaa5 1286e81 e70ffc1 1286e81 e70ffc1 1286e81 12d3e1a e70ffc1 55f46c1 e70ffc1 12d3e1a b374298 55f46c1 b374298 12d3e1a b374298 55f46c1 b374298 55f46c1 e70ffc1 b374298 12d3e1a e70ffc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import os
from _utils.LLMs.LLM_class import LLM
from _utils.gerar_relatorio_modelo_usuario.prompts import (
prompt_auxiliar_do_contextual_prompt,
create_prompt_auxiliar_do_contextual_prompt,
)
from _utils.bubble_integrations.obter_arquivo import get_pdf_from_bubble
from _utils.chains.Chain_class import Chain
from _utils.handle_files import return_document_list_with_llama_parser
from _utils.prompts.Prompt_class import Prompt
from _utils.splitters.Splitter_class import Splitter
from setup.easy_imports import PyPDFLoader
from langchain_openai import ChatOpenAI
from typing import List, Dict, Tuple, Optional, cast
from anthropic import Anthropic, AsyncAnthropic
import logging
from langchain.schema import Document
from llama_index import Document as Llama_Index_Document
import asyncio
from langchain.prompts import PromptTemplate
from typing import List
from multiprocessing import Process, Barrier, Queue
from dataclasses import dataclass
from langchain_core.messages import HumanMessage
from asgiref.sync import sync_to_async
from setup.easy_imports import ChatPromptTemplate, ChatOpenAI
from _utils.gerar_relatorio_modelo_usuario.llm_calls import aclaude_answer, agpt_answer
from _utils.gerar_relatorio_modelo_usuario.prompts import contextual_prompt
from _utils.models.gerar_relatorio import (
ContextualizedChunk,
DocumentChunk,
RetrievalConfig,
)
from _utils.prompts.Prompt_class import prompt as prompt_obj
lista_contador = []
class ContextualRetriever:
def __init__(
self, config: RetrievalConfig, claude_api_key: str, claude_context_model: str
):
self.config = config
# self.claude_client = Anthropic(api_key=claude_api_key)
self.claude_client = AsyncAnthropic(api_key=claude_api_key)
self.logger = logging.getLogger(__name__)
self.bm25 = None
self.claude_context_model = claude_context_model
async def contextualize_all_chunks(
self, full_text_as_array: List[Document], chunks: List[DocumentChunk]
) -> List[ContextualizedChunk]:
"""Add context to all chunks"""
contextualized_chunks = []
full_text = ""
for x in full_text_as_array:
full_text += x.page_content
prompt_auxiliar_summary = create_prompt_auxiliar_do_contextual_prompt(full_text)
print("\n\n\nprompt_auxiliar_summary[0:500]: ", prompt_auxiliar_summary[0:500])
# Claude comentado pois o limite de tokens estava sendo passado pela requisição e dava erro
# response_auxiliar_summary = await aclaude_answer(
# self.claude_client, self.claude_context_model, prompt_auxiliar_summary
# )
llms = LLM()
response_auxiliar_summary = await llms.googleGemini().ainvoke(
[HumanMessage(content=prompt_auxiliar_summary)]
)
print("\n\n\n\nresponse_auxiliar_summary: ", response_auxiliar_summary.content)
lista_de_listas_cada_com_20_chunks = [
chunks[i : i + 20] for i in range(0, len(chunks), 20)
]
print(
"lista_de_listas_cada_com_20_chunks: ", lista_de_listas_cada_com_20_chunks
)
async with asyncio.TaskGroup() as tg:
tasks = [
tg.create_task(
self.create_contextualized_chunk(
chunk, full_text_as_array, response_auxiliar_summary.content
)
)
# for chunk in chunks # ORIGINAL
for chunk in lista_de_listas_cada_com_20_chunks
]
# contextualized_chunks = [task.result() for task in tasks]
contextualized_chunks = []
for task in tasks:
# print("\n\ntask", task)
# print("\n\ntask.result()", task.result())
contextualized_chunks = contextualized_chunks + task.result()
print("\n\ncontextualized_chunks", contextualized_chunks)
return contextualized_chunks
# ORIGINAL
# async def create_contextualized_chunk(
# self, chunk, single_page_text, response_auxiliar_summary
# ):
# lista_contador.append(0)
# print("contador: ", len(lista_contador))
# page_number = chunk.page_number - 1
# page_content = single_page_text[page_number].page_content
# context = await self.llm_generate_context(
# page_content, chunk, response_auxiliar_summary
# )
# print("context: ", context)
# return ContextualizedChunk(
# content=chunk.content,
# page_number=chunk.page_number,
# chunk_id=chunk.chunk_id,
# start_char=chunk.start_char,
# end_char=chunk.end_char,
# context=context,
# )
async def create_contextualized_chunk(
self, chunks: List[DocumentChunk], single_page_text, response_auxiliar_summary
):
lista_contador.append(0)
print("contador: ", len(lista_contador))
all_pages_contents = ""
contador = 1
for chunk in chunks:
page_number = chunk.page_number - 1
page_content = single_page_text[page_number].page_content
all_pages_contents += page_content
contador += 1
context = await self.llm_generate_context(
page_content, chunks, response_auxiliar_summary
)
context = (
context.replace("document_id: ", "")
.replace("document_id:", "")
.replace("DOCUMENT_ID: ", "")
.replace("DOCUMENT_ID: ", "")
)
# print("context: ", context)
import re
pattern = r"\[(\d+)\] --- (.+?) --- (.+?)</chunk_context>" # Funciona para quando a resposta do LLM não vem com "document_id" escrito
# pattern = r"\[\s*(?:document_id:\s*)?(\d+)\s*\] --- \[document_title:\s*(.+?)\s*\] --- \[(.+?)\]"
matches = re.findall(pattern, context, re.DOTALL)
# Convert matches to the desired format
result = [
[int(doc_id), title.strip(), content.strip()]
for doc_id, title, content in matches
]
# print("\n\nresult", result)
if result == "" or result == [""]:
print("\n\ncontext", context)
lista_chunks = []
for index, chunk in enumerate(chunks):
lista_chunks.append(
ContextualizedChunk(
content=chunk.content,
page_number=chunk.page_number,
chunk_id=result[index][0],
start_char=chunk.start_char,
end_char=chunk.end_char,
context=" ".join(result[index][1:2]),
)
)
return lista_chunks
# ORIGINAL
# async def llm_generate_context(
# self, page_text: str, chunk: DocumentChunk, resumo_auxiliar
# ) -> str:
# """Generate contextual description using ChatOpenAI"""
# try:
# print("COMEÇOU A REQUISIÇÃO")
# prompt = contextual_prompt(page_text, resumo_auxiliar, chunk.content)
# # response = await aclaude_answer(
# # self.claude_client, self.claude_context_model, prompt
# # )
# # response = await agpt_answer(prompt)
# llms = LLM()
# response = await llms.deepseek().ainvoke([HumanMessage(content=prompt)])
# return cast(str, response.content)
# except Exception as e:
# self.logger.error(
# f"Context generation failed for chunk {chunk.chunk_id}: {str(e)}"
# )
# return ""
async def llm_generate_context(
self, page_text: str, chunks: List[DocumentChunk], resumo_auxiliar
) -> str:
"""Generate contextual description using ChatOpenAI"""
contador = 1
all_chunks_contents = ""
for chunk in chunks:
all_chunks_contents += chunk.content
all_chunks_contents += f"\n\n CHUNK {contador}:\n"
contador += 1
try:
print("COMEÇOU A REQUISIÇÃO")
prompt = contextual_prompt(page_text, resumo_auxiliar, all_chunks_contents)
# response = await aclaude_answer(
# self.claude_client, self.claude_context_model, prompt
# )
response = await agpt_answer(prompt)
# llms = LLM()
# response = await llms.deepseek().ainvoke([HumanMessage(content=prompt)])
# return cast(str, response.content)
return cast(str, response)
except Exception as e:
self.logger.error(f"Context generation failed for chunks .... : {str(e)}")
return ""
# def gerar_resumo_auxiliar_do_contextual_embedding(self):
# prompt = Prompt().create_prompt_template(
# "", prompt_auxiliar_do_contextual_prompt
# )
# Chain(prompt, ChatOpenAI())
# return
# Primeira função chamada do arquivo
async def contextualize_chunk_based_on_serializer(
serializer, contextual_retriever: ContextualRetriever, pages, all_PDFs_chunks
):
if serializer["should_have_contextual_chunks"]:
contextualized_chunks = await contextual_retriever.contextualize_all_chunks(
pages, all_PDFs_chunks
)
chunks_passados = contextualized_chunks
is_contextualized_chunk = True
else:
chunks_passados = all_PDFs_chunks
is_contextualized_chunk = False
return chunks_passados, is_contextualized_chunk
async def get_full_text_and_all_PDFs_chunks(
listaPDFs: List[str],
splitterObject: Splitter,
should_use_llama_parse: bool,
isBubble: bool,
):
all_PDFs_chunks = []
pages: List[Document] = []
# Load and process document
for pdf_path in listaPDFs:
if isBubble:
pages = pages + await get_pdf_from_bubble(pdf_path, should_use_llama_parse)
else:
if should_use_llama_parse:
pages = pages + await return_document_list_with_llama_parser(pdf_path)
else:
pages = pages + PyPDFLoader(pdf_path).load()
chunks = splitterObject.load_and_split_document(
pdf_path, pages, should_use_llama_parse
)
all_PDFs_chunks = all_PDFs_chunks + chunks
# Get full text for contextualization
# loader = PyPDFLoader(pdf_path)
# full_text = ""
# full_text = " ".join([page.page_content for page in pages])
return all_PDFs_chunks, pages # , full_text
# Código comentado abaixo é para ler as páginas ao redor da página atual do chunk
# page_content = ""
# for i in range(
# max(0, chunk.page_number - 1),
# min(len(single_page_text), chunk.page_number + 2),
# ):
# page_content += single_page_text[i].page_content if single_page_text[i] else ""
|