File size: 6,748 Bytes
1286e81
 
dc376b6
1286e81
 
 
 
 
 
 
 
 
 
 
 
dc376b6
1286e81
 
 
 
 
 
 
 
dc376b6
1286e81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc376b6
1286e81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
from langchain_community.document_loaders import PyPDFLoader
from _utils.resumo_completo_cursor import GerarDocumento, RetrievalConfig
from rest_framework.response import Response
from ragas import evaluate

from langchain.chains import SequentialChain
from langchain.prompts import PromptTemplate

# from langchain.schema import ChainResult
from langchain.memory import SimpleMemory


def test_ragas(serializer, listaPDFs):

    # Step 2: Setup RetrievalConfig and GerarDocumento
    config = RetrievalConfig(
        num_chunks=serializer["num_chunks_retrieval"],
        embedding_weight=serializer["embedding_weight"],
        bm25_weight=serializer["bm25_weight"],
        context_window=serializer["context_window"],
        chunk_overlap=serializer["chunk_overlap"],
    )

    summarizer = GerarDocumento(
        openai_api_key=os.environ.get("OPENAI_API_KEY"),
        claude_api_key=os.environ.get("CLAUDE_API_KEY"),
        config=config,
        embedding_model=serializer["hf_embedding"],
        chunk_overlap=serializer["chunk_overlap"],
        chunk_size=serializer["chunk_size"],
        num_k_rerank=serializer["num_k_rerank"],
        model_cohere_rerank=serializer["model_cohere_rerank"],
        claude_context_model=serializer["claude_context_model"],
        prompt_relatorio=serializer["prompt_relatorio"],
        gpt_model=serializer["model"],
        gpt_temperature=serializer["gpt_temperature"],
        id_modelo_do_usuario=serializer["id_modelo_do_usuario"],
        prompt_modelo=serializer["prompt_modelo"],
    )

    # Step 1: Define the components
    def load_and_split_documents(pdf_list, summarizer):
        """Loads and splits PDF documents into chunks."""
        all_chunks = []
        for pdf_path in pdf_list:
            chunks = summarizer.load_and_split_document(pdf_path)
            all_chunks.extend(chunks)
        return {"chunks": all_chunks}

    def get_full_text_from_pdfs(pdf_list):
        """Gets the full text from PDFs for contextualization."""
        full_text = []
        for pdf_path in pdf_list:
            loader = PyPDFLoader(pdf_path)
            pages = loader.load()
            text = " ".join([page.page_content for page in pages])
            full_text.append(text)
        return {"full_text": " ".join(full_text)}

    def contextualize_all_chunks(full_text, chunks, contextual_retriever):
        """Adds context to chunks using Claude."""
        contextualized_chunks = contextual_retriever.contextualize_all_chunks(
            full_text, chunks
        )
        return {"contextualized_chunks": contextualized_chunks}

    def create_vector_store(contextualized_chunks, summarizer):
        """Creates an enhanced vector store and BM25 index."""
        vector_store, bm25, chunk_ids = summarizer.create_enhanced_vector_store(
            contextualized_chunks
        )
        return {"vector_store": vector_store, "bm25": bm25, "chunk_ids": chunk_ids}

    def generate_summary(vector_store, bm25, chunk_ids, query, summarizer):
        """Generates an enhanced summary using the vector store and BM25 index."""
        structured_summaries = summarizer.gerar_documento_final(
            vector_store, bm25, chunk_ids, query
        )
        return {"structured_summaries": structured_summaries}

    # Step 3: Define Sequential Chain
    chain = SequentialChain(
        chains=[
            lambda inputs: load_and_split_documents(inputs["pdf_list"], summarizer),
            lambda inputs: get_full_text_from_pdfs(inputs["pdf_list"]),
            lambda inputs: contextualize_all_chunks(
                inputs["full_text"], inputs["chunks"], summarizer.contextual_retriever
            ),
            lambda inputs: create_vector_store(
                inputs["contextualized_chunks"], summarizer
            ),
            lambda inputs: generate_summary(
                inputs["vector_store"],
                inputs["bm25"],
                inputs["chunk_ids"],
                inputs["user_message"],
                summarizer,
            ),
        ],
        input_variables=["pdf_list", "user_message"],
        output_variables=["structured_summaries"],
    )

    from ragas.langchain.evalchain import RagasEvaluatorChain
    from ragas.metrics import (
        LLMContextRecall,
        Faithfulness,
        FactualCorrectness,
        SemanticSimilarity,
    )
    from ragas import evaluate
    from ragas.llms import LangchainLLMWrapper

    # from ragas.embeddings import LangchainEmbeddingsWrapper
    # evaluator_llm = LangchainLLMWrapper(ChatOpenAI(model="gpt-4o-mini"))
    evaluator_llm = LangchainLLMWrapper(chain)
    # evaluator_embeddings = LangchainEmbeddingsWrapper(OpenAIEmbeddings())
    from datasets import load_dataset

    dataset = load_dataset(
        "explodinggradients/amnesty_qa", "english_v3", trust_remote_code=True
    )

    from ragas import EvaluationDataset

    eval_dataset = EvaluationDataset.from_hf_dataset(dataset["eval"])

    metrics = [
        LLMContextRecall(llm=evaluator_llm),
        FactualCorrectness(llm=evaluator_llm),
        Faithfulness(llm=evaluator_llm),
        # SemanticSimilarity(embeddings=evaluator_embeddings)
    ]
    results = evaluate(dataset=eval_dataset, metrics=metrics)
    print("results: ", results)

    # Step 4: Run the Chain
    inputs = {
        "pdf_list": listaPDFs,
        "user_message": serializer["user_message"],
    }
    # result = chain.run(inputs)
    return Response({"msg": results})

    # Step 5: Format the Output
    # return {
    #     "resultado": result["structured_summaries"],
    #     "parametros-utilizados": {
    #         "num_chunks_retrieval": serializer["num_chunks_retrieval"],
    #         "embedding_weight": serializer["embedding_weight"],
    #         "bm25_weight": serializer["bm25_weight"],
    #         "context_window": serializer["context_window"],
    #         "chunk_overlap": serializer["chunk_overlap"],
    #         "num_k_rerank": serializer["num_k_rerank"],
    #         "model_cohere_rerank": serializer["model_cohere_rerank"],
    #         "more_initial_chunks_for_reranking": serializer["more_initial_chunks_for_reranking"],
    #         "claude_context_model": serializer["claude_context_model"],
    #         "gpt_temperature": serializer["gpt_temperature"],
    #         "user_message": serializer["user_message"],
    #         "model": serializer["model"],
    #         "hf_embedding": serializer["hf_embedding"],
    #         "chunk_size": serializer["chunk_size"],
    #         "chunk_overlap": serializer["chunk_overlap"],
    #         "prompt_relatorio": serializer["prompt_relatorio"],
    #         "prompt_modelo": serializer["prompt_modelo"],
    #     },
    # }