Spaces:
Sleeping
Sleeping
luanpoppe
commited on
Commit
·
16867c3
1
Parent(s):
b287766
feat: tentando melhorar espaçamento da resposta final
Browse files- _utils/utils.py +91 -78
_utils/utils.py
CHANGED
@@ -16,68 +16,74 @@ import openai
|
|
16 |
import pandas as pd
|
17 |
import markdown
|
18 |
|
19 |
-
os.environ["LANGCHAIN_TRACING_V2"]="true"
|
20 |
-
os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com"
|
21 |
os.environ.get("LANGCHAIN_API_KEY")
|
22 |
-
os.environ["LANGCHAIN_PROJECT"]="VELLA"
|
23 |
os.environ.get("OPENAI_API_KEY")
|
24 |
os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
25 |
-
embeddings_model = HuggingFaceEmbeddings(
|
|
|
|
|
26 |
|
27 |
allIds = []
|
28 |
|
|
|
29 |
def getPDF(file_paths):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
|
44 |
def create_retriever(documents, vectorstore):
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
retriever = vectorstore.as_retriever(
|
51 |
-
# search_type="similarity",
|
52 |
-
# search_kwargs={"k": 3},
|
53 |
-
)
|
54 |
-
|
55 |
-
return retriever
|
56 |
|
57 |
def create_prompt_llm_chain(system_prompt, modelParam):
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
69 |
|
70 |
def create_llm(modelParam):
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
|
82 |
|
83 |
class Resumo(BaseModel):
|
@@ -87,46 +93,49 @@ class Resumo(BaseModel):
|
|
87 |
doutrina: str = Field()
|
88 |
palavras_chave: List[str] = Field()
|
89 |
|
|
|
90 |
def create_prompt_llm_chain_summary(system_prompt, model_param):
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
question_answer_chain = create_stuff_documents_chain(prompt_and_llm["model"], prompt_and_llm["prompt"])
|
94 |
-
final_chain = question_answer_chain | JsonOutputParser(pydantic_object=Resumo)
|
95 |
-
return final_chain
|
96 |
|
97 |
def process_embedding_summary(system_prompt, model_param, full_text):
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
|
111 |
|
112 |
def get_embeddings(text):
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
)
|
117 |
-
return response.data
|
118 |
|
119 |
def create_prompt_and_llm(system_prompt, model_param):
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
130 |
|
131 |
DEFAULT_SYSTEM_PROMPT = """
|
132 |
|
@@ -201,6 +210,10 @@ def convert_markdown_to_HTML(text: str):
|
|
201 |
.replace("<diagnostico_processual>", "")
|
202 |
.replace("</diagnostico_processual>", "")
|
203 |
.replace("xml", "")
|
|
|
|
|
|
|
|
|
204 |
.replace("\n", "\n\n")
|
205 |
)
|
206 |
html = markdown.markdown(texto_inicial)
|
|
|
16 |
import pandas as pd
|
17 |
import markdown
|
18 |
|
19 |
+
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
20 |
+
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
|
21 |
os.environ.get("LANGCHAIN_API_KEY")
|
22 |
+
os.environ["LANGCHAIN_PROJECT"] = "VELLA"
|
23 |
os.environ.get("OPENAI_API_KEY")
|
24 |
os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
25 |
+
embeddings_model = HuggingFaceEmbeddings(
|
26 |
+
model_name="sentence-transformers/all-mpnet-base-v2"
|
27 |
+
)
|
28 |
|
29 |
allIds = []
|
30 |
|
31 |
+
|
32 |
def getPDF(file_paths):
|
33 |
+
documentId = 0
|
34 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
35 |
+
pages = []
|
36 |
+
for file in file_paths:
|
37 |
+
loader = PyPDFLoader(file, extract_images=False)
|
38 |
+
pagesDoc = loader.load_and_split(text_splitter)
|
39 |
+
pages = pages + pagesDoc
|
40 |
+
|
41 |
+
for page in pages:
|
42 |
+
documentId = str(uuid4())
|
43 |
+
allIds.append(documentId)
|
44 |
+
page.id = documentId
|
45 |
+
return pages
|
46 |
+
|
47 |
|
48 |
def create_retriever(documents, vectorstore):
|
49 |
+
print("\n\n")
|
50 |
+
print("documents: ", documents[:2])
|
51 |
|
52 |
+
vectorstore.add_documents(documents=documents)
|
53 |
+
|
54 |
+
retriever = vectorstore.as_retriever(
|
55 |
+
# search_type="similarity",
|
56 |
+
# search_kwargs={"k": 3},
|
57 |
+
)
|
58 |
+
|
59 |
+
return retriever
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
def create_prompt_llm_chain(system_prompt, modelParam):
|
63 |
+
model = create_llm(modelParam)
|
64 |
+
|
65 |
+
system_prompt = system_prompt + "\n\n" + "{context}"
|
66 |
+
prompt = ChatPromptTemplate.from_messages(
|
67 |
+
[
|
68 |
+
("system", system_prompt),
|
69 |
+
("human", "{input}"),
|
70 |
+
]
|
71 |
+
)
|
72 |
+
question_answer_chain = create_stuff_documents_chain(model, prompt)
|
73 |
+
return question_answer_chain
|
74 |
+
|
75 |
|
76 |
def create_llm(modelParam):
|
77 |
+
if modelParam == default_model:
|
78 |
+
return ChatOpenAI(model=modelParam, max_tokens=16384)
|
79 |
+
else:
|
80 |
+
return HuggingFaceEndpoint(
|
81 |
+
repo_id=modelParam,
|
82 |
+
task="text-generation",
|
83 |
+
max_new_tokens=1100,
|
84 |
+
do_sample=False,
|
85 |
+
huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
|
86 |
+
)
|
87 |
|
88 |
|
89 |
class Resumo(BaseModel):
|
|
|
93 |
doutrina: str = Field()
|
94 |
palavras_chave: List[str] = Field()
|
95 |
|
96 |
+
|
97 |
def create_prompt_llm_chain_summary(system_prompt, model_param):
|
98 |
+
prompt_and_llm = create_prompt_and_llm(system_prompt, model_param)
|
99 |
+
|
100 |
+
question_answer_chain = create_stuff_documents_chain(
|
101 |
+
prompt_and_llm["model"], prompt_and_llm["prompt"]
|
102 |
+
)
|
103 |
+
final_chain = question_answer_chain | JsonOutputParser(pydantic_object=Resumo)
|
104 |
+
return final_chain
|
105 |
|
|
|
|
|
|
|
106 |
|
107 |
def process_embedding_summary(system_prompt, model_param, full_text):
|
108 |
+
prompt_and_llm = create_prompt_and_llm(system_prompt, model_param)
|
109 |
+
|
110 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)
|
111 |
+
docs = text_splitter.create_documents([full_text])
|
112 |
+
embeddings = get_embeddings([doc.page_content for doc in docs])
|
113 |
+
|
114 |
+
content_list = [doc.page_content for doc in docs]
|
115 |
+
df = pd.DataFrame(content_list, columns=["page_content"])
|
116 |
+
vectors = [embedding.embedding for embedding in embeddings]
|
117 |
+
array = np.array(vectors)
|
118 |
+
embeddings_series = pd.Series(list(array))
|
119 |
+
df["embeddings"] = embeddings_series
|
120 |
|
121 |
|
122 |
def get_embeddings(text):
|
123 |
+
response = openai.embeddings.create(model="text-embedding-3-small", input=text)
|
124 |
+
return response.data
|
125 |
+
|
|
|
|
|
126 |
|
127 |
def create_prompt_and_llm(system_prompt, model_param):
|
128 |
+
model = create_llm(model_param)
|
129 |
+
|
130 |
+
system_prompt = system_prompt + "\n\n" + "{context}"
|
131 |
+
prompt = ChatPromptTemplate.from_messages(
|
132 |
+
[
|
133 |
+
("system", system_prompt),
|
134 |
+
("human", "{input}"),
|
135 |
+
]
|
136 |
+
)
|
137 |
+
return {"model": model, "prompt": prompt}
|
138 |
+
|
139 |
|
140 |
DEFAULT_SYSTEM_PROMPT = """
|
141 |
|
|
|
210 |
.replace("<diagnostico_processual>", "")
|
211 |
.replace("</diagnostico_processual>", "")
|
212 |
.replace("xml", "")
|
213 |
+
.replace("<li>\n", "<li>")
|
214 |
+
.replace("<ol>\n<li>", "<ol><li>")
|
215 |
+
.replace("</li>\n</ol>", "</li></ol>")
|
216 |
+
.replace("</li>\n<li>", "</li><li>")
|
217 |
.replace("\n", "\n\n")
|
218 |
)
|
219 |
html = markdown.markdown(texto_inicial)
|