luanpoppe commited on
Commit
e1d2a79
·
1 Parent(s): 753b4be

feat: gerando documento final corretamente

Browse files
_utils/gerar_relatorio_modelo_usuario/GerarDocumento.py CHANGED
@@ -177,41 +177,7 @@ class GerarDocumento:
177
  vector_store, bm25, chunk_ids, query
178
  )
179
 
180
- # Prepare context and track sources
181
- contexts = []
182
- sources = []
183
-
184
- # Get full documents for top results
185
- for chunk_id, score in ranked_results[: self.config.num_chunks]:
186
- results = vector_store.get(
187
- where={"chunk_id": chunk_id}, include=["documents", "metadatas"]
188
- )
189
-
190
- if results["documents"]:
191
- context = results["documents"][0]
192
- metadata = results["metadatas"][0]
193
-
194
- contexts.append(context)
195
- sources.append(
196
- {
197
- "content": context,
198
- "page": metadata["page"],
199
- "chunk_id": chunk_id,
200
- "relevance_score": score,
201
- "context": metadata.get("context", ""),
202
- }
203
- )
204
-
205
- if llm_ultimas_requests == "gpt-4o-mini":
206
- llm = ChatOpenAI(
207
- temperature=self.gpt_temperature,
208
- model=self.gpt_model,
209
- api_key=SecretStr(self.openai_api_key),
210
- )
211
- elif llm_ultimas_requests == "deepseek-chat":
212
- llm_instance = LLM()
213
- llm = llm_instance.deepseek()
214
-
215
  # prompt_auxiliar = PromptTemplate(
216
  # template=self.prompt_auxiliar, input_variables=["context"]
217
  # )
@@ -224,10 +190,10 @@ class GerarDocumento:
224
 
225
  prompt_gerar_documento = PromptTemplate(
226
  template=self.prompt_gerar_documento,
227
- input_variables=["documento_gerado", "context"],
228
  )
229
 
230
- documento_gerado_final = cast(
231
  str,
232
  llm.invoke(
233
  prompt_gerar_documento.format(
@@ -238,9 +204,7 @@ class GerarDocumento:
238
  )
239
 
240
  # Split the response into paragraphs
241
- summaries = [
242
- p.strip() for p in documento_gerado_final.split("\n\n") if p.strip()
243
- ]
244
 
245
  # Create structured output
246
  structured_output = []
 
177
  vector_store, bm25, chunk_ids, query
178
  )
179
 
180
+ llm = self.select_model_for_last_requests(llm_ultimas_requests)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
  # prompt_auxiliar = PromptTemplate(
182
  # template=self.prompt_auxiliar, input_variables=["context"]
183
  # )
 
190
 
191
  prompt_gerar_documento = PromptTemplate(
192
  template=self.prompt_gerar_documento,
193
+ input_variables=["context"],
194
  )
195
 
196
+ documento_gerado = cast(
197
  str,
198
  llm.invoke(
199
  prompt_gerar_documento.format(
 
204
  )
205
 
206
  # Split the response into paragraphs
207
+ summaries = [p.strip() for p in documento_gerado.split("\n\n") if p.strip()]
 
 
208
 
209
  # Create structured output
210
  structured_output = []