import os from langchain_backend.utils import create_prompt_llm_chain, create_retriever, getPDF from langchain_backend import utils from langchain.chains import create_retrieval_chain from langchain_huggingface import HuggingFaceEmbeddings from langchain_chroma import Chroma from langchain_openai import OpenAIEmbeddings os.environ.get("OPENAI_API_KEY") def get_llm_answer(system_prompt, user_prompt, pdf_url, model, embedding): if embedding == "gpt": embedding_object = OpenAIEmbeddings() else: embedding_object = HuggingFaceEmbeddings(model_name=embedding) vectorstore = Chroma( collection_name="documents", embedding_function=embedding_object ) print('model: ', model) print('embedding: ', embedding) pages = [] if pdf_url: pages = getPDF(pdf_url) else: pages = getPDF() retriever = create_retriever(pages, vectorstore) rag_chain = create_retrieval_chain(retriever, create_prompt_llm_chain(system_prompt, model)) results = rag_chain.invoke({"input": user_prompt}) print('allIds ARQUIVO MAIN: ', utils.allIds) vectorstore.delete( utils.allIds) vectorstore.delete_collection() utils.allIds = [] print('utils.allIds: ', utils.allIds) return results