Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app (1).py +64 -0
- requirements.txt +9 -0
app (1).py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""app
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1ZybFOpX1r-SAA-RslP5WJkQ9gdI6JCCj
|
8 |
+
"""
|
9 |
+
|
10 |
+
import streamlit as st
|
11 |
+
import os
|
12 |
+
from langchain.chat_models import ChatOpenAI
|
13 |
+
from langchain.document_loaders import PyPDFLoader
|
14 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
15 |
+
from langchain.vectorstores import FAISS
|
16 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
17 |
+
from langchain.chains import RetrievalQA
|
18 |
+
import tempfile
|
19 |
+
|
20 |
+
st.set_page_config(page_title="Análise de PDF com LangChain", layout="centered")
|
21 |
+
st.title("📄🔍 Análise de PDF com LangChain")
|
22 |
+
|
23 |
+
uploaded_file = st.file_uploader("Faça upload de um PDF", type="pdf")
|
24 |
+
|
25 |
+
if uploaded_file is not None:
|
26 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
27 |
+
tmp.write(uploaded_file.read())
|
28 |
+
pdf_path = tmp.name
|
29 |
+
|
30 |
+
with st.spinner("Processando o PDF..."):
|
31 |
+
try:
|
32 |
+
loader = PyPDFLoader(pdf_path)
|
33 |
+
documents = loader.load()
|
34 |
+
|
35 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
36 |
+
docs = text_splitter.split_documents(documents)
|
37 |
+
|
38 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
39 |
+
vectorstore = FAISS.from_documents(docs, embeddings)
|
40 |
+
|
41 |
+
llm = ChatOpenAI(
|
42 |
+
openai_api_base="https://openrouter.ai/api/v1",
|
43 |
+
openai_api_key=os.environ["OPENROUTER_API_KEY"],
|
44 |
+
model='deepseek/deepseek-r1-zero:free'
|
45 |
+
)
|
46 |
+
|
47 |
+
qa_chain = RetrievalQA.from_chain_type(
|
48 |
+
llm=llm,
|
49 |
+
retriever=vectorstore.as_retriever(),
|
50 |
+
return_source_documents=True
|
51 |
+
)
|
52 |
+
|
53 |
+
resposta = qa_chain.invoke({"query": "Qual é o principal assunto tratado neste PDF?"})
|
54 |
+
|
55 |
+
st.success("✅ Resposta gerada com sucesso!")
|
56 |
+
st.subheader("🤖 Resposta:")
|
57 |
+
st.write(resposta['result'])
|
58 |
+
|
59 |
+
st.subheader("📄 Fontes:")
|
60 |
+
for i, doc in enumerate(resposta['source_documents']):
|
61 |
+
st.markdown(f"**Fonte {i+1}:**\n\n{doc.page_content[:500]}...")
|
62 |
+
|
63 |
+
except Exception as e:
|
64 |
+
st.error(f"Erro ao processar o PDF: {str(e)}")
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
langchain
|
3 |
+
openai
|
4 |
+
python-dotenv
|
5 |
+
PyPDF2
|
6 |
+
faiss-cpu
|
7 |
+
tiktoken
|
8 |
+
pypdf
|
9 |
+
sentence-transformers
|