File size: 2,160 Bytes
4db208a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
from langchain_community.document_loaders import TextLoader
from langchain.vectorstores import Chroma
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from llm.gemini import Gemini
from utils.questions_parser import parse_question

class Retriever:

    _model = Gemini()

    def __init__(self):

        if "DATA_PATH" not in os.environ:
            raise ValueError("DATA_PATH environment variable is not set")

        DATA_PATH = os.environ["DATA_PATH"]

        self.data_loader = TextLoader(DATA_PATH, encoding="UTF-8").load()

        self.questions = list(
            map(lambda x: "##Questão" + x, self.data_loader[0].page_content.split("##Questão"))
        )

        self.docs = []

        for question in self.questions:
            try:
                self.docs.append(parse_question(question))
            except Exception as e:
                print(e, question)

        self.vectorstore = Chroma.from_documents(self.docs, self._model.embeddings, persist_directory="./chroma_db")

        self.metadata_field_info = [
            AttributeInfo(
                name="topico",
                description="A materia escolar da qual a questão pertence.",
                type="string",
            ),
            AttributeInfo(
                name="assunto",
                description="O assunto da materia fornecida anteriormente.",
                type="string",
            ),
            AttributeInfo(
                name="dificuldade",
                description="O nivel de dificuldade para resolver a questao.",
                type="string",
            ),
            AttributeInfo(
                name="tipo",
                description="O tipo da questao. Pode ser ou Multipla Escolha ou Justificativa",
                type="string",
            ),
        ]

        document_content_description = "Questões de matérias do ensino médio."

        self.retriever = SelfQueryRetriever.from_llm(
            self._model.llm, self.vectorstore, document_content_description, self.metadata_field_info, verbose=True
        )