File size: 2,184 Bytes
4db208a
 
 
 
 
8514dc9
4db208a
 
 
8514dc9
4db208a
 
 
 
 
 
 
 
 
 
 
8514dc9
4db208a
8514dc9
 
4db208a
8514dc9
 
 
4db208a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8514dc9
 
4db208a
8514dc9
 
 
 
 
4db208a
8514dc9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
from langchain_community.document_loaders import TextLoader
from langchain.vectorstores import Chroma
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_text_splitters import CharacterTextSplitter
from llm.gemini import Gemini
from utils.questions_parser import parse_question


class Retriever:

    _model = Gemini()

    def __init__(self):

        if "DATA_PATH" not in os.environ:
            raise ValueError("DATA_PATH environment variable is not set")

        DATA_PATH = os.environ["DATA_PATH"]

        data_loader = TextLoader(DATA_PATH, encoding="UTF-8").load()

        text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=0)
        docs = text_splitter.split_documents(data_loader)

        self.vectorstore = Chroma.from_documents(
            docs, self._model.embeddings, persist_directory="./chroma_db"
        )

        self.metadata_field_info = [
            AttributeInfo(
                name="topico",
                description="A materia escolar da qual a questão pertence.",
                type="string",
            ),
            AttributeInfo(
                name="assunto",
                description="O assunto da materia fornecida anteriormente.",
                type="string",
            ),
            AttributeInfo(
                name="dificuldade",
                description="O nivel de dificuldade para resolver a questao.",
                type="string",
            ),
            AttributeInfo(
                name="tipo",
                description="O tipo da questao. Pode ser ou Multipla Escolha ou Justificativa",
                type="string",
            ),
        ]

        document_content_description = "Questões de matérias do ensino médio."

        db = Chroma.from_documents(docs, self._model.embeddings)

        self.retriever = SelfQueryRetriever.from_llm(
            self._model.llm,
            self.vectorstore,
            document_content_description,
            self.metadata_field_info,
            verbose=True,
        )

        self.docs_retriever = db.as_retriever()