basic-sentiment-classifier / streamlit_app.py
lucbelanger's picture
added req, streamlit app
0dda8b8
raw
history blame
362 Bytes
import streamlit as st
from transformers import pipeline
st.title("Hugging Face Demo")
text = st.text_input("Enter text to analyze")
@st.cache_resource
def get_model():
return pipeline("sentiment-analysis")
model = get_model()
if text:
result = model(text)
st.write("Sentiment:", result[0]["label"])
st.write("Confidence:", result[0]["score"])