Spaces:
Build error
Build error
File size: 9,100 Bytes
7dda7b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import math
import gensim
import matplotlib.pylab as plt
import numpy as np
import pandas as pd
from six import string_types
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from sklearn.metrics import accuracy_score
import gradio as gr
WORD_EMBEDDING_MODEL_TYPES = (gensim.models.keyedvectors.KeyedVectors,
gensim.models.fasttext.FastText,
gensim.models.word2vec.Word2Vec,
gensim.models.base_any2vec.BaseWordEmbeddingsModel,) # pylint: disable=line-too-long
def assert_gensim_keyed_vectors(model):
if not isinstance(model, WORD_EMBEDDING_MODEL_TYPES):
type_names = (model_type.__name__
for model_type in WORD_EMBEDDING_MODEL_TYPES)
raise TypeError('model should be on of the types'
' ({}), not {}.'
.format(', '.join(type_names),
type(model)))
def generate_words_forms(words):
return sum([generate_one_word_forms(word) for word in words], [])
def cosine_similarity(v, u):
"""Calculate the cosine similarity between two vectors."""
v_norm = np.linalg.norm(v)
u_norm = np.linalg.norm(u)
similarity = v @ u / (v_norm * u_norm)
return similarity
def generate_one_word_forms(word):
return [word.lower(), word.upper(), word.title()]
def get_seed_vector(seed, bias_word_embedding):
if seed == 'direction':
positive_end = bias_word_embedding.positive_end
negative_end = bias_word_embedding.negative_end
bias_word_embedding._is_direction_identified() # pylint: disable=protected-access
seed_vector = bias_word_embedding.direction
else:
if seed == 'ends':
positive_end = bias_word_embedding.positive_end
negative_end = bias_word_embedding.negative_end
else:
positive_end, negative_end = seed
seed_vector = normalize(bias_word_embedding.model[positive_end]
- bias_word_embedding.model[negative_end])
return seed_vector, positive_end, negative_end
def most_similar(model, positive=None, negative=None,
topn=10, restrict_vocab=None, indexer=None,
unrestricted=True):
"""
Find the top-N most similar words.
Positive words contribute positively towards the similarity,
negative words negatively.
This function computes cosine similarity between a simple mean
of the projection weight vectors of the given words and
the vectors for each word in the model.
The function corresponds to the `word-analogy` and `distance`
scripts in the original word2vec implementation.
Based on Gensim implementation.
:param model: Word embedding model of ``gensim.model.KeyedVectors``.
:param list positive: List of words that contribute positively.
:param list negative: List of words that contribute negatively.
:param int topn: Number of top-N similar words to return.
:param int restrict_vocab: Optional integer which limits the
range of vectors
which are searched for most-similar values.
For example, restrict_vocab=10000 would
only check the first 10000 word vectors
in the vocabulary order. (This may be
meaningful if you've sorted the vocabulary
by descending frequency.)
:param bool unrestricted: Whether to restricted the most
similar words to be not from
the positive or negative word list.
:return: Sequence of (word, similarity).
"""
if topn is not None and topn < 1:
return []
if positive is None:
positive = []
if negative is None:
negative = []
model.init_sims()
if (isinstance(positive, string_types)
and not negative):
# allow calls like most_similar('dog'),
# as a shorthand for most_similar(['dog'])
positive = [positive]
if ((isinstance(positive, string_types) and negative)
or (isinstance(negative, string_types) and positive)):
raise ValueError('If positives and negatives are given, '
'both should be lists!')
# add weights for each word, if not already present;
# default to 1.0 for positive and -1.0 for negative words
positive = [
(word, 1.0) if isinstance(word, string_types + (np.ndarray,))
else word
for word in positive
]
negative = [
(word, -1.0) if isinstance(word, string_types + (np.ndarray,))
else word
for word in negative
]
# compute the weighted average of all words
all_words, mean = set(), []
for word, weight in positive + negative:
if isinstance(word, np.ndarray):
mean.append(weight * word)
else:
mean.append(weight * model.word_vec(word, use_norm=True))
if word in model.vocab:
all_words.add(model.vocab[word].index)
if not mean:
raise ValueError("Cannot compute similarity with no input.")
mean = gensim.matutils.unitvec(np.array(mean)
.mean(axis=0)).astype(float)
if indexer is not None:
return indexer.most_similar(mean, topn)
limited = (model.vectors_norm if restrict_vocab is None
else model.vectors_norm[:restrict_vocab])
dists = limited @ mean
if topn is None:
return dists
best = gensim.matutils.argsort(dists,
topn=topn + len(all_words),
reverse=True)
# if not unrestricted, then ignore (don't return)
# words from the input
result = [(model.index2word[sim], float(dists[sim]))
for sim in best
if unrestricted or sim not in all_words]
return result[:topn]
def normalize(v):
"""Normalize a 1-D vector."""
if v.ndim != 1:
raise ValueError('v should be 1-D, {}-D was given'.format(
v.ndim))
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
def project_params(u, v):
"""Projecting and rejecting the vector v onto direction u with scalar."""
normalize_u = normalize(u)
projection = (v @ normalize_u)
projected_vector = projection * normalize_u
rejected_vector = v - projected_vector
return projection, projected_vector, rejected_vector
def project_reject_vector(v, u):
"""Projecting and rejecting the vector v onto direction u."""
projected_vector = project_vector(v, u)
rejected_vector = v - projected_vector
return projected_vector, rejected_vector
def round_to_extreme(value, digits=2):
place = 10**digits
new_value = math.ceil(abs(value) * place) / place
if value < 0:
new_value = -new_value
return new_value
def take_two_sides_extreme_sorted(df, n_extreme,
part_column=None,
head_value='',
tail_value=''):
head_df = df.head(n_extreme)[:]
tail_df = df.tail(n_extreme)[:]
if part_column is not None:
head_df[part_column] = head_value
tail_df[part_column] = tail_value
return (pd.concat([head_df, tail_df])
.drop_duplicates()
.reset_index(drop=True))
def project_vector(v, u):
"""Projecting the vector v onto direction u."""
normalize_u = normalize(u)
return (v @ normalize_u) * normalize_u
def reject_vector(v, u):
"""Rejecting the vector v onto direction u."""
return v - project_vector(v, u)
def update_word_vector(model, word, new_vector):
model.vectors[model.vocab[word].index] = new_vector
if model.vectors_norm is not None:
model.vectors_norm[model.vocab[word].index] = normalize(new_vector)
def project_params(u, v):
"""Projecting and rejecting the vector v onto direction u with scalar."""
normalize_u = normalize(u)
projection = (v @ normalize_u)
projected_vector = projection * normalize_u
rejected_vector = v - projected_vector
return projection, projected_vector, rejected_vector
def plot_clustering_as_classification(X, y_true, random_state=1, ax=None):
if ax is None:
_, ax = plt.subplots(figsize=(10, 5))
y_cluster = (KMeans(n_clusters=2, random_state=random_state)
.fit_predict(X))
embedded_vectors = (TSNE(n_components=2, random_state=random_state)
.fit_transform(X))
for y_value in np.unique(y_cluster):
mask = (y_cluster == y_value)
label = 'Positive' if y_value else 'Negative'
ax.scatter(embedded_vectors[mask, 0],
embedded_vectors[mask, 1],
label=label)
ax.legend()
acc = accuracy_score(y_true, y_cluster)
return max(acc, 1 - acc)
|