Spaces:
Runtime error
Runtime error
File size: 2,775 Bytes
d6a3883 2f789a3 55292dd 2f789a3 55292dd 2f789a3 55292dd fdab1ea 55292dd 0f6f16f 55292dd 0f6f16f fdab1ea 55292dd 04a455f 2bf8c9f 04a455f fdab1ea 04a455f d30b71c 04a455f fade9b4 5c2ee4f ab414a6 04a455f ab414a6 04a455f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description:
"""
import gradio as gr
import operator
import torch
from transformers import BertTokenizer, BertForMaskedLM
tokenizer = BertTokenizer.from_pretrained("shibing624/macbert4csc-base-chinese")
model = BertForMaskedLM.from_pretrained("shibing624/macbert4csc-base-chinese")
def ai_text(text):
with torch.no_grad():
outputs = model(**tokenizer([text], padding=True, return_tensors='pt'))
def get_errors(corrected_text, origin_text):
sub_details = []
for i, ori_char in enumerate(origin_text):
if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']:
# add unk word
corrected_text = corrected_text[:i] + ori_char + corrected_text[i:]
continue
if i >= len(corrected_text):
continue
if ori_char != corrected_text[i]:
if ori_char.lower() == corrected_text[i]:
# pass english upper char
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
continue
sub_details.append((ori_char, corrected_text[i], i, i + 1))
sub_details = sorted(sub_details, key=operator.itemgetter(2))
return corrected_text, sub_details
_text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '')
corrected_text = _text[:len(text)]
corrected_text, details = get_errors(corrected_text, text)
print(text, ' => ', corrected_text, details)
return corrected_text, details
if __name__ == '__main__':
print(ai_text('少先队员因该为老人让坐'))
examples = [
['真麻烦你了。希望你们好好的跳无'],
['少先队员因该为老人让坐'],
['机七学习是人工智能领遇最能体现智能的一个分知'],
['今天心情很好'],
['他法语说的很好,的语也不错'],
['他们的吵翻很不错,再说他们做的咖喱鸡也好吃'],
]
inputs = gr.inputs.Textbox(lines=5, placeholder="Input chinese text with spell error")
output_text = gr.outputs.Textbox()
gr.Interface(ai_text, inputs, output_text,
theme="grass",
css=".footer {display:none !important}",
title="Chinese Spelling Correction Model shibing624/macbert4csc-base-chinese",
description="Copy or input error Chinese text. Submit and the machine will correct text.",
article="Link to <a href='https://github.com/shibing624/pycorrector' style='color:blue;' target='_blank\'>Github REPO</a>",
examples=examples).launch()
|