# -*- coding: utf-8 -*- """ @author:XuMing(xuming624@qq.com) @description: """ import gradio as gr import operator import torch from transformers import BertTokenizer, BertForMaskedLM tokenizer = BertTokenizer.from_pretrained("shibing624/macbert4csc-base-chinese") model = BertForMaskedLM.from_pretrained("shibing624/macbert4csc-base-chinese") def ai_text(text): with torch.no_grad(): outputs = model(**tokenizer([text], padding=True, return_tensors='pt')) def get_errors(corrected_text, origin_text): sub_details = [] for i, ori_char in enumerate(origin_text): if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']: # add unk word corrected_text = corrected_text[:i] + ori_char + corrected_text[i:] continue if i >= len(corrected_text): continue if ori_char != corrected_text[i]: if ori_char.lower() == corrected_text[i]: # pass english upper char corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:] continue sub_details.append((ori_char, corrected_text[i], i, i + 1)) sub_details = sorted(sub_details, key=operator.itemgetter(2)) return corrected_text, sub_details _text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '') corrected_text = _text[:len(text)] corrected_text, details = get_errors(corrected_text, text) print(text, ' => ', corrected_text, details) return corrected_text, details if __name__ == '__main__': print(ai_text('少先队员因该为老人让坐')) examples = [ ['真麻烦你了。希望你们好好的跳无'], ['少先队员因该为老人让坐'], ['机七学习是人工智能领遇最能体现智能的一个分知'], ['今天心情很好'], ['他法语说的很好,的语也不错'], ['他们的吵翻很不错,再说他们做的咖喱鸡也好吃'], ] inputs = gr.inputs.Textbox(lines=5, placeholder="Input chinese text with spell error") output_text = gr.outputs.Textbox() gr.Interface(ai_text, inputs, output_text, theme="grass", css=".footer {display:none !important}", title="Chinese Spelling Correction Model shibing624/macbert4csc-base-chinese", description="Copy or input error Chinese text. Submit and the machine will correct text.", article="Link to Github REPO", examples=examples).launch()