File size: 6,292 Bytes
1d376a9
 
 
24a15c0
 
697be1a
c0dd25e
 
697be1a
908b597
 
697be1a
908b597
 
 
 
 
 
 
 
 
 
 
5323497
 
908b597
 
 
 
 
 
9a87dbf
908b597
 
 
 
 
 
697be1a
 
908b597
 
 
697be1a
 
908b597
 
 
 
f008087
908b597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
697be1a
 
1d376a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5323497
7aa2aea
 
 
 
 
 
 
5323497
7aa2aea
 
 
 
 
 
 
 
 
 
 
5323497
 
 
7aa2aea
 
 
3b31368
7aa2aea
 
 
5323497
7aa2aea
5323497
7aa2aea
 
 
 
697be1a
908b597
697be1a
 
 
 
40eaa37
697be1a
 
 
 
c0dd25e
 
697be1a
 
 
908b597
 
1d376a9
908b597
5323497
40eaa37
908b597
5323497
7aa2aea
 
908b597
 
 
7aa2aea
908b597
7aa2aea
908b597
 
7aa2aea
305acd7
7aa2aea
 
40eaa37
305acd7
697be1a
 
c0dd25e
 
 
 
 
 
 
3be1fea
 
5323497
 
 
 
 
 
 
 
697be1a
 
 
 
 
 
 
 
 
 
 
908b597
 
 
 
 
 
c0dd25e
5323497
697be1a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import io
import re

import pandas as pd
import streamlit as st

GITHUB_URL = "https://github.com/LudwigStumpp/llm-leaderboard"


def extract_table_and_format_from_markdown_text(markdown_table: str) -> pd.DataFrame:
    """Extracts a table from a markdown text and formats it as a pandas DataFrame.

    Args:
        text (str): Markdown text containing a table.

    Returns:
        pd.DataFrame: Table as pandas DataFrame.
    """
    df = (
        pd.read_table(io.StringIO(markdown_table), sep="|", header=0, index_col=1)
        .dropna(axis=1, how="all")  # drop empty columns
        .iloc[1:]  # drop first row which is the "----" separator of the original markdown table
        .sort_index(ascending=True)
        .apply(lambda x: x.str.strip() if x.dtype == "object" else x)
        .replace("", float("NaN"))
        .astype(float, errors="ignore")
    )

    # remove whitespace from column names and index
    df.columns = df.columns.str.strip()
    df.index = df.index.str.strip()
    df.index.name = df.index.name.strip()

    return df


def extract_markdown_table_from_multiline(multiline: str, table_headline: str, next_headline_start: str = "#") -> str:
    """Extracts the markdown table from a multiline string.

    Args:
        multiline (str): content of README.md file.
        table_headline (str): Headline of the table in the README.md file.
        next_headline_start (str, optional): Start of the next headline. Defaults to "#".

    Returns:
        str: Markdown table.

    Raises:
        ValueError: If the table could not be found.
    """
    # extract everything between the table headline and the next headline
    table = []
    start = False
    for line in multiline.split("\n"):
        if line.startswith(table_headline):
            start = True
        elif line.startswith(next_headline_start):
            start = False
        elif start:
            table.append(line + "\n")

    if len(table) == 0:
        raise ValueError(f"Could not find table with headline '{table_headline}'")

    return "".join(table)


def remove_markdown_links(text: str) -> str:
    """Modifies a markdown text to remove all markdown links.
    Example: [DISPLAY](LINK) to DISPLAY
    First find all markdown links with regex.
    Then replace them with: $1
    Args:
        text (str): Markdown text containing markdown links
    Returns:
        str: Markdown text without markdown links.
    """

    # find all markdown links
    markdown_links = re.findall(r"\[([^\]]+)\]\(([^)]+)\)", text)

    # remove link keep display text
    for display, link in markdown_links:
        text = text.replace(f"[{display}]({link})", display)

    return text


def filter_dataframe(df: pd.DataFrame, ignore_columns: list[str] | None = None) -> pd.DataFrame:
    """
    Adds a UI on top of a dataframe to let viewers filter columns

    Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/

    Args:
        df (pd.DataFrame): Original dataframe
        ignore_columns (list[str], optional): Columns to ignore. Defaults to None.

    Returns:
        pd.DataFrame: Filtered dataframe
    """
    modify = st.checkbox("Add filters")

    if not modify:
        return df

    df = df.copy()

    if ignore_columns is None:
        ignore_columns = []

    modification_container = st.container()

    with modification_container:
        to_filter_index = st.multiselect("Filter by model:", df.index)
        if to_filter_index:
            df = pd.DataFrame(df.loc[to_filter_index])

        to_filter_columns = st.multiselect("Filter by benchmark:", [c for c in df.columns if c not in ignore_columns])
        if to_filter_columns:
            df = pd.DataFrame(df[ignore_columns + to_filter_columns])

    return df


def setup_basic():
    title = "πŸ† LLM-Leaderboard"

    st.set_page_config(
        page_title=title,
        page_icon="πŸ†",
        layout="wide",
    )
    st.title(title)

    st.markdown(
        "A joint community effort to create one central leaderboard for LLMs."
        f" Visit [llm-leaderboard]({GITHUB_URL}) to contribute.",
    )


def setup_leaderboard(readme: str):
    leaderboard_table = extract_markdown_table_from_multiline(readme, table_headline="## Leaderboard")
    leaderboard_table = remove_markdown_links(leaderboard_table)
    df_leaderboard = extract_table_and_format_from_markdown_text(leaderboard_table)
    df_leaderboard["Commercial Use?"] = df_leaderboard["Commercial Use?"].map({"yes": 1, "no": 0}).astype(bool)

    st.markdown("## Leaderboard")
    st.dataframe(filter_dataframe(df_leaderboard, ignore_columns=["Commercial Use?"]))


def setup_benchmarks(readme: str):
    benchmarks_table = extract_markdown_table_from_multiline(readme, table_headline="## Benchmarks")
    df_benchmarks = extract_table_and_format_from_markdown_text(benchmarks_table)

    st.markdown("## Covered Benchmarks")

    selected_benchmark = st.selectbox("Select a benchmark to learn more:", df_benchmarks.index.unique())
    df_selected = df_benchmarks.loc[selected_benchmark]
    text = [
        f"Name: {selected_benchmark}",
    ]
    for key in df_selected.keys():
        text.append(f"{key}: {df_selected[key]} ")
    st.markdown("  \n".join(text))


def setup_sources():
    st.markdown("## Sources")
    st.markdown(
        "The results of this leaderboard are collected from the individual papers and published results of the model "
        "authors. If you are interested in the sources of each individual reported model value, please visit the "
        f"[llm-leaderboard]({GITHUB_URL}) repository."
    )


def setup_disclaimer():
    st.markdown("## Disclaimer")
    st.markdown(
        "Above information may be wrong. If you want to use a published model for commercial use, please contact a "
        "lawyer."
    )


def setup_footer():
    st.markdown(
        """
        ---
        Made with ❀️ by the awesome open-source community from all over 🌍.
        """
    )


def main():
    setup_basic()

    with open("README.md", "r") as f:
        readme = f.read()

    setup_leaderboard(readme)
    setup_benchmarks(readme)
    setup_sources()
    setup_disclaimer()
    setup_footer()


if __name__ == "__main__":
    main()