import gradio as gr from transformers import pipeline, GPT2TokenizerFast modelId = "luel/gpt2-tigrinya-medium" tokenizer = GPT2TokenizerFast.from_pretrained(modelId, model_max_length=128) generator = pipeline("text-generation", model=modelId, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id) def generate_text(prompt, max_length, temperature): try: generated = generator( prompt, max_length=max_length, temperature=temperature, do_sample=True, repetition_penalty=1.5 ) return generated[0]['generated_text'] except Exception as e: return f"Something went wrong, try again. Error: {str(e)}" def create_interface(): with gr.Blocks() as demo: gr.Markdown("# Tigrinya Text Generator (GPT-2)") gr.Markdown( "This is a GPT-2 model trained from scratch on Tigrinya text data, primarily from news sources. " "Enter your Tigrinya text prompt and adjust the parameters to generate text." ) with gr.Row(): input_temperature = gr.Slider( minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature", ) input_max_length = gr.Slider( minimum=10, maximum=128, value=60, step=1, label="Maximum Length", ) with gr.Row(): with gr.Column(scale=1): input_prompt = gr.Textbox( label="Enter your Tigrinya text prompt", placeholder="ትግራይ", lines=5 ) with gr.Column(scale=1): output_text = gr.Textbox( label="Generated Text", lines=5, interactive=True ) with gr.Row(): generate_btn = gr.Button("Generate", variant="primary") clear_btn = gr.ClearButton([input_prompt, output_text]) generate_btn.click( fn=generate_text, inputs=[input_prompt, input_max_length, input_temperature], outputs=output_text ) gr.Examples( examples=[ ["ክልል ትግራይ"], ["መረጻ ኣሜሪካ"], ["ሰላም"] ], inputs=input_prompt ) return demo if __name__ == "__main__": demo = create_interface() demo.launch(debug=True)