File size: 17,407 Bytes
e29a384 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
import io
import gradio as gr
import cv2
import base64
import openai
import os
import asyncio
import concurrent.futures
from openai import AsyncOpenAI
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema import StrOutputParser
from PIL import Image
import ast
import matplotlib.pyplot as plt
from prompts import VISION_SYSTEM_PROMPT, USER_PROMPT_TEMPLATE, FINAL_EVALUATION_SYSTEM_PROMPT, FINAL_EVALUATION_USER_PROMPT, SUMMARY_AND_TABLE_PROMPT, AUDIO_SYSTEM_PROMPT
from dotenv import load_dotenv
global global_dict
global_dict = {}
######
# SETTINGS
VIDEO_FRAME_LIMIT = 2000
######
def validate_api_key(api_key):
client = openai.OpenAI(api_key=api_key)
try:
# Make your OpenAI API request here
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "user", "content": "Hello world"},
]
)
global_dict['api_key'] = api_key
except openai.RateLimitError as e:
# Handle rate limit error (we recommend using exponential backoff)
print(f"OpenAI API request exceeded rate limit: {e}")
response = None
error = e
pass
except openai.APIConnectionError as e:
# Handle connection error here
print(f"Failed to connect to OpenAI API: {e}")
response = None
error = e
pass
except openai.APIError as e:
# Handle API error here, e.g. retry or log
print(f"OpenAI API returned an API Error: {e}")
response = None
error = e
pass
if response:
return True
else:
raise gr.Error(f"OpenAI returned an API Error: {error}")
def _process_video(video_file):
# Read and process the video file
video = cv2.VideoCapture(video_file.name)
if 'video_file' not in global_dict:
global_dict.setdefault('video_file', video_file.name)
else:
global_dict['video_file'] = video_file.name
base64Frames = []
while video.isOpened():
success, frame = video.read()
if not success:
break
_, buffer = cv2.imencode(".jpg", frame)
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
video.release()
if len(base64Frames) > VIDEO_FRAME_LIMIT:
raise gr.Warning(f"Video's play time is too long. (>1m)")
print(len(base64Frames), "frames read.")
if not base64Frames:
raise gr.Error(f"Cannot open the video.")
return base64Frames
def _make_video_batch(video_file):
frames = _process_video(video_file)
TOTAL_FRAME_COUNT = len(frames)
BATCH_SIZE = int(1)
TOTAL_BATCH_SIZE = int(TOTAL_FRAME_COUNT * 1 / 300) # 5 = total_batch_percent
BATCH_STEP = int(TOTAL_FRAME_COUNT / TOTAL_BATCH_SIZE)
base64FramesBatch = []
for idx in range(0, TOTAL_FRAME_COUNT, BATCH_STEP * BATCH_SIZE):
#print(f'## {idx}')
temp = []
for i in range(BATCH_SIZE):
#print(f'# {idx + BATCH_STEP * i}')
if (idx + BATCH_STEP * i) < TOTAL_FRAME_COUNT:
temp.append(frames[idx + BATCH_STEP * i])
else:
continue
base64FramesBatch.append(temp)
for idx, batch in enumerate(base64FramesBatch):
# assert len(batch) <= BATCH_SIZE
print(f'##{idx} - batch_size: {len(batch)}')
if 'batched_frames' not in global_dict:
global_dict.setdefault('batched_frames', base64FramesBatch)
else:
global_dict['batched_frames'] = base64FramesBatch
return base64FramesBatch
def show_batches(video_file):
batched_frames = _make_video_batch(video_file)
images1 = []
for i, l in enumerate(batched_frames):
print(f"#### Batch_{i+1}")
for j, img in enumerate(l):
print(f'## Image_{j+1}')
image_bytes = base64.b64decode(img.encode("utf-8"))
# Convert the bytes to a stream (file-like object)
image_stream = io.BytesIO(image_bytes)
# Open the image as a PIL image
image = Image.open(image_stream)
images1.append((image, f"batch {i+1}"))
print("-"*100)
return images1
def show_audio_transcript(video_file, api_key):
previous_video_file = global_dict.get('video_file')
if global_dict.get('transcript') and previous_video_file == video_file.name:
return global_dict['transcript']
else:
audio_file = open(video_file.name, "rb")
client = openai.OpenAI(api_key=api_key)
transcript = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
response_format="text"
)
if 'transcript' not in global_dict:
global_dict.setdefault('transcript', transcript)
else:
global_dict['transcript'] = transcript
return transcript
# κ° λ²νΌμ λν μ‘μ
ν¨μ μ μ
audio_rubric_subsets = {'1': '1. want to be ~ λΌλ ννμ νμ©νμ¬ μ₯λν¬λ§μ λ§νλ€.', '2': '(be) good at ~μ΄λΌλ ννμ νμ©νμ¬ μ₯λν¬λ§κ³Ό κ΄λ ¨λ μμ μ΄ μ νλ μΌμ λ§νλ€.', '3': 'μ§μ
μ λνλ΄λ λ¨μ΄λ₯Ό μ νν μ¬μ©νλ€', '4': 'λ§μ€μ΄μ§ μκ³ μ μ°½νκ² λ§νλ€.'}
rubric_subsets = {'5':'5. μμ κ° μλ νλλ‘ μΉ΄λ©λΌλ₯Ό 보며 λ§νλ€.', '6': '6. μ μ ν μ λμμ μ¬μ©νμ¬ λ§νλ€.'}
rubrics_keyword = '"ν΅μ¬νν(want to be) νμ©", "ν΅μ¬νν(be good at) νμ©", "μ§μ
μ λνλ΄λ λ¨μ΄ νμ©", "μ μ°½μ±", "μλλ°© μμ", "μ λμ"'
global_dict['audio_rubric_subsets'] = audio_rubric_subsets
global_dict['rubric_subsets'] = rubric_subsets
global_dict['rubrics_keyword'] = rubrics_keyword
async def async_call_gpt_vision(client, batch, rubric_subset):
# Format the messages for the vision prompt, including the rubric subset and images in the batch
vision_prompt_messages = [
{"role": "system", "content": VISION_SYSTEM_PROMPT}, # Ensure VISION_SYSTEM_PROMPT is defined
{
"role": "user",
"content": [
PromptTemplate.from_template(USER_PROMPT_TEMPLATE).format(rubrics=rubric_subset), # Ensure USER_PROMPT_TEMPLATE is defined
*map(lambda x: {"image": x, "resize": 300}, batch),
],
},
]
# Parameters for the API call
params = {
"model": "gpt-4-vision-preview",
"messages": vision_prompt_messages,
"max_tokens": 1024,
}
# Asynchronous API call
try:
result_raw = await client.chat.completions.create(**params)
result = result_raw.choices[0].message.content
print(result)
return result
except Exception as e:
print(f"Error processing batch with rubric subset {rubric_subset}: {e}")
return None
async def process_rubrics_in_batches(client, frames, rubric_subsets):
results = {}
for key, rubric_subset in rubric_subsets.items():
# Process each image batch with the current rubric subset
tasks = [async_call_gpt_vision(client, batch, rubric_subset) for batch in frames]
subset_results = await asyncio.gather(*tasks)
results[key] = [result for result in subset_results if result is not None]
# Filter out None results in case of errors
return results
def wrapper_call_gpt_vision():
api_key = global_dict.get('api_key')
frames = global_dict.get('batched_frames')
rubric_subsets = global_dict.get('rubric_subsets')
client = AsyncOpenAI(api_key=api_key)
async def call_gpt_vision():
async_full_result_vision = await process_rubrics_in_batches(client, frames, rubric_subsets)
if 'full_result_vision' not in global_dict:
global_dict.setdefault('full_result_vision', async_full_result_vision)
else:
global_dict['full_result_vision'] = async_full_result_vision
return async_full_result_vision
# μ μ΄λ²€νΈ 루ν μμ± λ° μ€μ
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(call_gpt_vision())
async def async_get_evaluation_text(client, result_subset):
result_subset_text = ' \n'.join(result_subset)
print(result_subset_text)
evaluation_text = PromptTemplate.from_template(FINAL_EVALUATION_USER_PROMPT).format(evals = result_subset_text)
evaluation_text_message = [
{"role": "system", "content": FINAL_EVALUATION_SYSTEM_PROMPT}, # Ensure VISION_SYSTEM_PROMPT is defined
{
"role": "user",
"content": evaluation_text,
},
]
params = {
"model": "gpt-4-vision-preview",
"messages": evaluation_text_message,
"max_tokens": 1024,
}
# Asynchronous API call
try:
result_raw_2 = await client.chat.completions.create(**params)
result_2 = result_raw_2.choices[0].message.content
return result_2
except Exception as e:
print(f"Error getting evaluation text {result_subset}: {e}")
return None
# return evaluation_text
async def async_get_full_result(client, full_result_vision):
#tasks = []
results_2 = {}
# Create a task for each entry in full_result_vision and add to tasks list
for key, result_subset in full_result_vision.items():
tasks_2 = [async_get_evaluation_text(client, result_subset)]
text_results = await asyncio.gather(*tasks_2)
results_2[key] = [result_2 for result_2 in text_results if result_2 is not None]
results_2_val_list = list(results_2.values())
results_2_val = ""
for i in range(len(results_2_val_list)):
results_2_val += results_2_val_list[i][0]
results_2_val += "\n"
return results_2_val
# Combine all results into a single string
def wrapper_get_full_result():
api_key = global_dict.get('api_key')
full_result_vision = global_dict.get('full_result_vision')
client = AsyncOpenAI(api_key=api_key)
#{key: choice.choices[0].message.content for key, choice in full_result_vision.items()}
async def get_full_result():
full_text = await async_get_full_result(client,full_result_vision)
# global_dictμ κ²°κ³Όλ₯Ό μ¬λ°λ₯΄κ² μ μ₯
if 'full_text' not in global_dict:
global_dict.setdefault('full_text', full_text)
else:
global_dict['full_text'] = full_text # μ κ°μΌλ‘ μ΄κΈ°ν
print("full_text: ")
print(full_text)
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(get_full_result())
def call_gpt_audio(api_key) -> str:
audio_rubric_subsets = global_dict.get('audio_rubric_subsets') #!!!!! μΆκ°
transcript = global_dict.get('transcript')
openai.api_key = api_key
full_text_audio = ""
print(f"RUBRIC_AUDIO: {audio_rubric_subsets}")
PROMPT_MESSAGES = [
{
"role": "system",
"content": AUDIO_SYSTEM_PROMPT,
},
{
"role": "user",
"content": PromptTemplate.from_template(USER_PROMPT_TEMPLATE).format(rubrics=audio_rubric_subsets) + "\n\n<TEXT>\n" + transcript
},
]
params = {
"model": "gpt-4",
"messages": PROMPT_MESSAGES,
"max_tokens": 1024,
}
try:
result = openai.chat.completions.create(**params)
full_text_audio = result.choices[0].message.content
print(full_text_audio)
except openai.OpenAIError as e:
print(f"Failed to connect to OpenAI: {e}")
pass
if 'full_text_audio' not in global_dict:
global_dict.setdefault('full_text_audio', full_text_audio)
else:
global_dict['full_text_audio'] = full_text_audio
return full_text_audio
def get_final_anser(api_key):
rubrics_keyword = global_dict.get('rubrics_keyword')
full_text_audio = global_dict.get('full_text_audio')
full_text = global_dict.get('full_text')
full = full_text_audio + full_text
global_dict['full'] = full
chain = ChatOpenAI(
api_key=api_key,
model="gpt-4",
max_tokens=1024,
temperature=0,
)
prompt = PromptTemplate.from_template(SUMMARY_AND_TABLE_PROMPT)
runnable = prompt | chain | StrOutputParser()
final_eval = runnable.invoke({"full": full, "rubrics_keyword":rubrics_keyword})
print(final_eval)
if 'final_eval' not in global_dict:
global_dict.setdefault('final_eval', final_eval)
else:
global_dict['final_eval'] = final_eval
return final_eval
def tablize_final_anser():
final_eval = global_dict.get('final_eval')
pos3 = int(final_eval.find("[["))
pos4 = int(final_eval.find("]]"))
tablize_final_eval = ast.literal_eval(final_eval[(pos3):(pos4+2)])
cat_final_eval, val_final_eval = tablize_final_eval[0], tablize_final_eval[1]
val_final_eval = [int(score) for score in val_final_eval]
fig, ax = plt.subplots()
ax.bar(cat_final_eval, val_final_eval)
ax.set_ylabel('Scores')
ax.set_title('Scores by category')
#plt.xticks(rotation=30)
plt.rc('xtick', labelsize=3)
ax.set_xticks(range(len(cat_final_eval)))
ax.set_yticks([0,2,4,6,8,10])
ax.set_xticklabels(cat_final_eval)
# PIL.Image κ°μ²΄λ‘ λ³ν
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close(fig)
buf.seek(0)
# PIL.Image κ°μ²΄λ‘ λ³ν
image = Image.open(buf)
return image
def breif_final_anser():
final_eval = global_dict.get('final_eval')
pos1 = int(final_eval.find("**μ’
ν© μ μ**"))
pos2 = int(final_eval.find("----μμ½ λ----"))
breif_final_eval = final_eval[pos1:pos2]
return breif_final_eval
def fin_final_anser():
fin_final_eval = global_dict.get('full')
return fin_final_eval
def mainpage():
with gr.Blocks() as start_page:
gr.Markdown("Title")
with gr.Row():
with gr.Column(scale=1):
api_key_input = gr.Textbox(
label="Enter your OpenAI API Key",
info="Your API Key must be allowed to use GPT-4 Vision",
placeholder="sk-*********...",
lines=1
)
gr.Markdown("λΉλμ€ μ
λ‘λ νμ΄μ§")
with gr.Row():
with gr.Column(scale=1):
video_upload = gr.File(
label="Upload your video (video under 1 minute is the best..!)",
file_types=["video"],
)
#λμ€μ λ°μ κ°λ μ‘°μ λ‘ λ°κΎΈκΈ°!!!
"""with gr.Column(scale=1):
weight_shift_button = gr.Button("Weight Shift")
balance_button = gr.Button("Balance")
form_button = gr.Button("Form")
overall_button = gr.Button("Overall")
"""
with gr.Row():
with gr.Column(scale=1):
process_button = gr.Button("Process")
gr.Markdown("κ²°κ³Ό νμ΄μ§")
with gr.Row():
with gr.Column(scale=1):
output_box_fin_table = gr.Image(type="pil", label="Score Chart")
with gr.Column(scale=1):
output_box_fin_brief = gr.Textbox(
label="Brief Evaluation",
lines=10,
interactive=True,
show_copy_button=True,
)
with gr.Row():
with gr.Column(scale=1):
output_box_fin_fin = gr.Textbox(
label="Detailed Evaluation",
lines=10,
interactive=True,
show_copy_button=True,
)
with gr.Column(scale=1):
gallery = gr.Gallery(
label="Batched Snapshots of Video",
columns=[3],
rows=[10],
object_fit="contain",
height="auto",
)
#start_button.click(fn = video_rubric, inputs=[], outputs= [])
#weight_shift_button.click(fn = action_weight_shift, inputs=[], outputs=[])
#balance_button.click(fn = action_balance, inputs=[], outputs=[])
#form_button.click(fn = action_form, inputs=[], outputs=[])
#overall_button.click(fn = action_all, inputs=[], outputs=[])
process_button.click(fn=validate_api_key, inputs=api_key_input, outputs=None).success(fn=show_batches, inputs=[video_upload], outputs=[gallery])\
.success(fn=show_audio_transcript, inputs=[video_upload, api_key_input], outputs=[])\
.success(fn=call_gpt_audio, inputs=[api_key_input], outputs=[])\
.success(fn=lambda:wrapper_call_gpt_vision(), inputs=[], outputs=[]) \
.success(fn=lambda:wrapper_get_full_result(), inputs=[], outputs=[])\
.success(fn=get_final_anser, inputs=[api_key_input], outputs=[])\
.success(fn=tablize_final_anser, inputs=[], outputs=[output_box_fin_table])\
.success(fn=breif_final_anser, inputs=[], outputs=[output_box_fin_brief])\
.success(fn=fin_final_anser, inputs=[], outputs=[output_box_fin_fin])
start_page.launch()
if __name__ == "__main__":
mainpage() |