import gradio as gr import spaces import torch from diffusers import AutoencoderKL, TCDScheduler from diffusers.models.model_loading_utils import load_state_dict from gradio_imageslider import ImageSlider from huggingface_hub import hf_hub_download from controlnet_union import ControlNetModel_Union from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline MODELS = { "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", } config_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="config_promax.json", ) config = ControlNetModel_Union.load_config(config_file) controlnet_model = ControlNetModel_Union.from_config(config) model_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="diffusion_pytorch_model_promax.safetensors", ) state_dict = load_state_dict(model_file) model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" ) model.to(device="cuda", dtype=torch.float16) vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ).to("cuda") pipe = StableDiffusionXLFillPipeline.from_pretrained( "SG161222/RealVisXL_V5.0_Lightning", torch_dtype=torch.float16, vae=vae, controlnet=model, variant="fp16", ).to("cuda") pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) @spaces.GPU(duration=24) def fill_image(prompt, image, model_selection, paste_back): ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt(prompt, "cuda", True) source = image["background"] mask = image["layers"][0] alpha_channel = mask.split()[3] binary_mask = alpha_channel.point(lambda p: p > 0 and 255) cnet_image = source.copy() cnet_image.paste(0, (0, 0), binary_mask) for image in pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=cnet_image, ): yield image, cnet_image print(f"{model_selection=}") print(f"{paste_back=}") if paste_back: image = image.convert("RGBA") cnet_image.paste(image, (0, 0), binary_mask) else: cnet_image = image yield source, cnet_image def clear_result(): return gr.update(value=None) title = """

AutoDiffusers智能魔笔

Draw the mask over the subject you want to erase or change and write what you want to inpaint it with.
This is a lighting model with almost no CFG and 12 steps, so don't expect high quality generations.
""" with gr.Blocks() as demo: gr.HTML(title) with gr.Row(): with gr.Column(): prompt = gr.Textbox( label="Prompt", info="Describe what to inpaint the mask with", lines=3, ) with gr.Column(): model_selection = gr.Dropdown( choices=list(MODELS.keys()), value="RealVisXL V5.0 Lightning", label="Model", ) with gr.Row(): with gr.Column(): run_button = gr.Button("Generate") with gr.Column(): paste_back = gr.Checkbox(True, label="Paste back original") with gr.Row(): input_image = gr.ImageMask( type="pil", label="Input Image", crop_size=(1024, 1024), layers=False ) result = ImageSlider( interactive=False, label="Generated Image", ) use_as_input_button = gr.Button("Use as Input Image", visible=False) def use_output_as_input(output_image): return gr.update(value=output_image[1]) use_as_input_button.click( fn=use_output_as_input, inputs=[result], outputs=[input_image] ) run_button.click( fn=clear_result, inputs=None, outputs=result, ).then( fn=lambda: gr.update(visible=False), inputs=None, outputs=use_as_input_button, ).then( fn=fill_image, inputs=[prompt, input_image, model_selection, paste_back], outputs=result, ).then( fn=lambda: gr.update(visible=True), inputs=None, outputs=use_as_input_button, ) prompt.submit( fn=clear_result, inputs=None, outputs=result, ).then( fn=lambda: gr.update(visible=False), inputs=None, outputs=use_as_input_button, ).then( fn=fill_image, inputs=[prompt, input_image, model_selection, paste_back], outputs=result, ).then( fn=lambda: gr.update(visible=True), inputs=None, outputs=use_as_input_button, ) demo.queue(max_size=12).launch(share=False)