File size: 10,749 Bytes
b04454e e13283d b04454e e13283d 7789848 e13283d b39e82b e13283d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import streamlit as st
import yfinance as yf
import numpy as np
import pandas as pd
from plotly.subplots import make_subplots
import plotly.graph_objects as go
def analyze_and_visualize_straddle(ticker, strike_call, strike_put, premium_call, premium_put):
"""
This function is used to analyze a given ticker and visualize the payoffs for both long and short straddle strategies.
Parameters:
- ticker: Symbol of the underlying asset as is on Yahoo Finance.
- strike_call: Strike price for the call option.
- strike_put: Strike price for the put option.
- premium_call: Premium paid for the call option.
- premium_put: Premium paid for the put option.
"""
## Downloading historical data
df = yf.download(ticker, multi_level_index=False, auto_adjust=False)
# Computing returns
df['Returns'] = df['Adj Close'].pct_change()
# Computing annualized volatility
df['Vol'] = df['Returns'].rolling(20).std() * np.sqrt(252)
df.dropna(axis = 0, inplace = True) # Removing null values
# Generating array of equally-spaced points representing the quantiles to be calculated (from 0% to 100%)
quantiles = np.quantile(df['Vol'], np.linspace(0,1,11))
# Using quantilies to categorize and label the annualized volatility values
quantile_labels = pd.cut(df['Vol'], bins = quantiles,
labels = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
# Adding categorical labels to the dataframe
df['Vol_Rank'] = quantile_labels
# Plotting data
fig = make_subplots(rows = 3, cols = 1, horizontal_spacing=0.2, row_heights=[.60, .20, .20], shared_xaxes=True)
# First row --> Closing Price
fig.add_trace(go.Scatter(
x = df.index, y = df['Adj Close'], name = 'Closing Price'
), row = 1, col = 1)
# Second row --> Annualized Volatility
fig.add_trace(go.Scatter(
x = df.index, y = df['Vol'], name = 'Annualized Volatility'
), row = 2, col = 1)
# Third row --> Volatility rank
fig.add_trace(go.Scatter(
x = df.index, y = df['Vol_Rank'], name = 'Volatility Rank'
), row = 3, col = 1)
# Defining subplots layout
fig.update_layout(title = {'text': f'<b>{ticker} Closing Price & Volatility</b>'},
template = 'plotly_white',
height = 900, width = 950,
showlegend=False,
hovermode='x unified')
# Defining layout of y-axes across subplots
fig.update_yaxes(title_text = 'Closing Price ($)', row = 1)
fig.update_yaxes(title_text = 'Annualized Volatility', row = 2)
fig.update_yaxes(title_text = 'Volatility Rank', row = 3)
# Generating an array of possible prices the underlying asset might fall into
stock_prices = np.linspace(0.79 * min(strike_put, strike_call), 1.19 * max(strike_put, strike_call), 100).round(2)
# Computing payoffs
# Payoffs for holding long call and put options
long_call_payoff = np.maximum(stock_prices - strike_call, 0) - premium_call
long_put_payoff = np.maximum(strike_put - stock_prices, 0) - premium_put
# Payoffs for holding short positions in call and put options
short_call_payoff = -long_call_payoff
short_put_payoff = -long_put_payoff
# Combined payoffs for both long and short positions
combined_long_payoff = long_call_payoff + long_put_payoff
combined_short_payoff = short_call_payoff + short_put_payoff
# Computing profit and loss for long straddle
profit_long = np.maximum(combined_long_payoff, 0)
loss_long = np.minimum(combined_long_payoff, 0)
# Computing profit and loss for short straddle
loss_short = np.minimum(combined_short_payoff, 0)
profit_short = np.maximum(combined_short_payoff, 0)
# Creating subplots
fig2 = make_subplots(
rows=2, cols=1,
horizontal_spacing=0.2,
row_heights=[0.5, 0.5],
shared_xaxes=False,
shared_yaxes=False
)
# Adding Long Straddle traces
fig2.add_trace(
go.Scatter(x=stock_prices, y=long_call_payoff, mode='lines', line=dict(color='grey', dash='dash'), name='Long Call', hovertemplate='%{y:.2f}'),
row=1, col=1
)
fig2.add_trace(
go.Scatter(x=stock_prices, y=long_put_payoff, mode='lines', line=dict(color='grey', dash='dash'), name='Long Put', hovertemplate='%{y:.2f}'),
row=1, col=1
)
# Adding Short Straddle traces
fig2.add_trace(
go.Scatter(x=stock_prices, y=short_call_payoff, mode='lines', line=dict(color='grey', dash='dash'), name='Short Call', hovertemplate='%{y:.2f}'),
row=2, col=1
)
fig2.add_trace(
go.Scatter(x=stock_prices, y=short_put_payoff, mode='lines', line=dict(color='grey', dash='dash'), name='Short Put', hovertemplate='%{y:.2f}'),
row=2, col=1
)
# Adding the payoff lines for Long Straddle
fig2.add_trace(
go.Scatter(x=stock_prices, y=profit_long, mode='lines', line=dict(color='black', dash='solid'), name='Profit', hovertemplate='%{y:.2f}',
fill='tozeroy', fillcolor='rgba(0, 255, 0, 0.5)'),
row=1, col=1
)
fig2.add_trace(
go.Scatter(x=stock_prices, y=loss_long, mode='lines', line=dict(color='black', dash='solid'), name='Loss', hovertemplate='%{y:.2f}',
fill='tozeroy', fillcolor='rgba(255, 0, 0, 0.5)'),
row=1, col=1
)
# Adding the payoff lines for Long Straddle
fig2.add_trace(
go.Scatter(x=stock_prices, y=loss_short, mode='lines', line=dict(color='black', dash='solid'), name = 'Loss', hovertemplate='%{y:.2f}',
fill='tozeroy', fillcolor='rgba(255, 0, 0, 0.5)'),
row=2, col=1
)
fig2.add_trace(
go.Scatter(x=stock_prices, y=profit_short, mode='lines', line=dict(color='black', dash='solid'), name = 'Profit', hovertemplate='%{y:.2f}',
fill='tozeroy', fillcolor='rgba(0, 255, 0, 0.5)'),
row=2, col=1
)
# Defining layout
fig2.update_layout(
title={'text': f'<b>{ticker} Long & Short Straddle</b>'},
template='plotly_white',
height=1000, width=750,
showlegend=False,
hovermode='x unified')
# Defining y-axes and x-axes tiles across rows
fig2.update_yaxes(title_text='Long Payoff ($)', row=1)
fig2.update_yaxes(title_text='Short Payoff ($)', row=2)
fig2.update_xaxes(title_text = 'Underlying Asset Price at Expiration', row=1)
fig2.update_xaxes(title_text = 'Underlying Asset Price at Expiration', row=2)
# Displaying plots
return fig, fig2
st.set_page_config(page_title="Long and Short Straddle",
page_icon=":chart_with_upwards_trend",
layout="wide",
initial_sidebar_state="expanded",
#theme={"base":"light"}
)
title = '<h1 style="font-family:Didot; font-size: 56px; text-align: left"><b>Options Trading: Long & Short Straddle</b></h1>'
st.markdown(title, unsafe_allow_html=True)
st.markdown("""
This app helps you compute the payoffs for long and short straddles for options trading. It will also plot the historical closing prices for the
underlying asset, its annualized volatility, and its volatility rank.""")
st.markdown("""
Annualized volatility is computed by multiplying the standard deviation of the last 20 trading days by the square root
of 252. The volatility rank is computed by breaking down the annualized volatility into ten equally-sized bins, and it
ranges from 1 to 10, where 1 represents low volatility, and 10 represents high volatility.""")
st.markdown('For more information about options and straddles, you can see my Kaggle Notebook, [Options Trading: Long & Short Straddle 📈](https://www.kaggle.com/code/lusfernandotorres/options-trading-long-short-straddle), where I describe the process of building this demo app.')
st.write(f"""**Parameters:**""")
st.write(f"""**• Ticker:** The asset symbol as it is on Yahoo Finance.""")
st.write(f"""**• Strike Price (Call):** Strike price for the call option.""")
st.write(f"""**• Strike Price (Put):** Strike price for the put option.""")
st.write(f"""**• Premium (Call):** Premium paid for the call option.""")
st.write(f"""**• Premium (Put):** Premium paid for the put option.""")
ticker = st.text_input("Ticker", placeholder="Enter the symbol for the underlying asset.")
strike_call = st.number_input("Strike Price (Call)", min_value=0.0, format="%f")
strike_put = st.number_input("Strike Price (Put)", min_value=0.0, format="%f")
premium_call = st.number_input("Premium (Call)", min_value=0.0, format="%f")
premium_put = st.number_input("Premium (Put)", min_value=0.0, format="%f")
# Button to trigger the analysis and visualization
if st.button('Analyze and Visualize Straddle'):
# Check if all required inputs are provided
if not ticker:
st.error("Please enter a ticker symbol to proceed.")
elif strike_call <= 0:
st.error("Please enter a valid strike price for the call option.")
elif strike_put <= 0:
st.error("Please enter a valid strike price for the put option.")
elif premium_call <= 0:
st.error("Please enter a valid premium for the call option.")
elif premium_put <= 0:
st.error("Please enter a valid premium for the put option.")
else:
# All inputs are valid, proceed with the function call
fig, fig2 = analyze_and_visualize_straddle(ticker, strike_call, strike_put, premium_call, premium_put)
st.plotly_chart(fig) # Display the figure in the app
st.plotly_chart(fig2) # Display the figure in the app
signature_html = """
<hr style="border: 0; height: 1px; border-top: 0.85px solid #b2b2b2">
<div style="text-align: left; color: #8d8d8d; padding-left: 15px; font-size: 14.25px;">
Luis Fernando Torres, 2024<br><br>
Let's connect!🔗<br>
<a href="https://www.linkedin.com/in/luuisotorres/" target="_blank">LinkedIn</a> • <a href="https://medium.com/@luuisotorres" target="_blank">Medium</a> • <a href="https://www.kaggle.com/lusfernandotorres" target="_blank">Kaggle</a><br><br>
</div>
<div style="text-align: center; margin-top: 50px; color: #8d8d8d; padding-left: 15px; font-size: 14.25px;">
<b>Like my content? Feel free to <a href="https://www.buymeacoffee.com/luuisotorres" target="_blank">Buy Me a Coffee ☕</a></b>
</div>
<div style="text-align: center; margin-top: 80px; color: #8d8d8d; padding-left: 15px; font-size: 14.25px;">
<b><a href="https://luuisotorres.github.io/" target="_blank">https://luuisotorres.github.io/</a></b>
</div>
"""
st.markdown(signature_html, unsafe_allow_html=True) |