File size: 7,537 Bytes
e11cde7
cfe4337
95dc30b
cfe4337
 
95dc30b
cfe4337
 
95dc30b
cfe4337
95dc30b
cfe4337
 
 
 
 
 
 
 
 
e11cde7
95dc30b
 
cfe4337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95dc30b
 
cfe4337
 
 
 
 
 
 
95dc30b
 
cfe4337
 
 
 
 
95dc30b
 
cfe4337
 
 
95dc30b
e11cde7
 
cfe4337
 
 
 
 
 
95dc30b
cfe4337
95dc30b
 
 
cfe4337
95dc30b
 
 
cfe4337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e11cde7
cfe4337
 
 
 
 
 
 
95dc30b
cfe4337
 
 
 
 
 
95dc30b
cfe4337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95dc30b
cfe4337
e11cde7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe4337
 
e11cde7
 
 
cfe4337
 
e11cde7
 
 
 
cfe4337
 
95dc30b
cfe4337
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import io
import os.path
import sys

import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import scipy.sparse
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms.functional as TF
from gradio.inputs import Image as GradioInputImage
from gradio.outputs import Image as GradioOutputImage
from PIL import Image
from scipy.sparse.linalg import eigsh
from skimage.color import label2rgb
from torch.utils.hooks import RemovableHandle
from torchvision import transforms
from torchvision.utils import make_grid
from matplotlib.pyplot import get_cmap


def get_model(name: str):
    if 'dino' in name:
        model = torch.hub.load('facebookresearch/dino:main', name)
        model.fc = torch.nn.Identity()
        val_transform = get_transform(name)
        patch_size = model.patch_embed.patch_size
        num_heads = model.blocks[0].attn.num_heads
    elif name in ['mocov3_vits16', 'mocov3_vitb16']:
        model = torch.hub.load('facebookresearch/dino:main', name.replace('mocov3', 'dino'))
        checkpoint_file, size_char = {
            'mocov3_vits16': ('vit-s-300ep-timm-format.pth', 's'), 
            'mocov3_vitb16': ('vit-b-300ep-timm-format.pth', 'b'),
        }[name]
        url = f'https://dl.fbaipublicfiles.com/moco-v3/vit-{size_char}-300ep/vit-{size_char}-300ep.pth.tar'
        checkpoint = torch.hub.load_state_dict_from_url(url)
        model.load_state_dict(checkpoint['model'])
        model.fc = torch.nn.Identity()
        val_transform = get_transform(name)
        patch_size = model.patch_embed.patch_size
        num_heads = model.blocks[0].attn.num_heads
    else:
        raise ValueError(f'Unsupported model: {name}')
    model = model.eval()
    return model, val_transform, patch_size, num_heads


def get_transform(name: str):
    if any(x in name for x in ('dino', 'mocov3', 'convnext', )):
        normalize = transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
        transform = transforms.Compose([transforms.ToTensor(), normalize])
    else:
        raise NotImplementedError()
    return transform


def get_diagonal(W: scipy.sparse.csr_matrix, threshold: float = 1e-12):
    D = W.dot(np.ones(W.shape[1], W.dtype))
    D[D < threshold] = 1.0  # Prevent division by zero.
    D = scipy.sparse.diags(D)
    return D


# Parameters
model_name = 'dino_vitb16'  # TODOL Figure out how to make this user-editable
K = 5

# Fixed parameters
MAX_SIZE = 384

# Load model
model, val_transform, patch_size, num_heads = get_model(model_name)


# GPU
if torch.cuda.is_available():
    print("CUDA is available, using GPU.")
    device = torch.device("cuda")
    model.to(device)
else:
    print("CUDA is not available, using CPU.")
    device = torch.device("cpu")


@torch.no_grad()
def segment(inp: Image):
    # NOTE: The image is already resized to the desired size.

    # Preprocess image
    images: torch.Tensor = val_transform(inp)
    images = images.unsqueeze(0).to(device)

    # Add hook
    which_block = -1
    if 'dino' in model_name or 'mocov3' in model_name:
        feat_out = {}
        def hook_fn_forward_qkv(module, input, output):
            feat_out["qkv"] = output
        handle: RemovableHandle = model._modules["blocks"][which_block]._modules["attn"]._modules["qkv"].register_forward_hook(
            hook_fn_forward_qkv
        )
    else:
        raise ValueError(model_name)

    # Reshape image
    P = patch_size
    B, C, H, W = images.shape
    H_patch, W_patch = H // P, W // P
    H_pad, W_pad = H_patch * P, W_patch * P
    T = H_patch * W_patch + 1  # number of tokens, add 1 for [CLS]

    # Crop image to be a multiple of the patch size
    images = images[:, :, :H_pad, :W_pad]

    # Extract features
    if 'dino' in model_name or 'mocov3' in model_name:
        model.get_intermediate_layers(images)[0].squeeze(0)
        output_qkv = feat_out["qkv"].reshape(B, T, 3, num_heads, -1 // num_heads).permute(2, 0, 3, 1, 4)
        feats = output_qkv[1].transpose(1, 2).reshape(B, T, -1)[:, 1:, :].squeeze(0)
    else:
        raise ValueError(model_name)

    # Remove hook from the model
    handle.remove()
    
    # Normalize features
    normalize = True
    if normalize:
        feats = F.normalize(feats, p=2, dim=-1)

    # Compute affinity matrix
    W_feat = (feats @ feats.T)
    
    # Feature affinities 
    threshold_at_zero = True
    if threshold_at_zero:
        W_feat = (W_feat * (W_feat > 0))
    W_feat = W_feat / W_feat.max()  # NOTE: If features are normalized, this naturally does nothing
    W_feat = W_feat.cpu().numpy()

    # # NOTE: Here is where we would add the color information. For simplicity, we will not add it here.
    # W_comb = W_feat + W_color * image_color_lambda  # combination
    # D_comb = np.array(get_diagonal(W_comb).todense())  # is dense or sparse faster? not sure, should check

    # Diagonal
    W_comb = W_feat
    D_comb = np.array(get_diagonal(W_comb).todense())  # is dense or sparse faster? not sure, should check

    # Compute eigenvectors
    try:
        eigenvalues, eigenvectors = eigsh(D_comb - W_comb, k=(K + 1), sigma=0, which='LM', M=D_comb)
    except:
        eigenvalues, eigenvectors = eigsh(D_comb - W_comb, k=(K + 1), which='SM', M=D_comb)
    eigenvalues = torch.from_numpy(eigenvalues)
    eigenvectors = torch.from_numpy(eigenvectors.T).float()

    # Resolve sign ambiguity
    for k in range(eigenvectors.shape[0]):
        if 0.5 < torch.mean((eigenvectors[k] > 0).float()).item() < 1.0:  # reverse segment
            eigenvectors[k] = 0 - eigenvectors[k]

    # Arrange eigenvectors into grid
    cmap = get_cmap('viridis')
    output_images = []
    for i in range(1, K + 1):
        eigenvector = eigenvectors[i].reshape(1, 1, H_patch, W_patch)  # .reshape(1, 1, H_pad, W_pad)
        eigenvector: torch.Tensor = F.interpolate(eigenvector, size=(H_pad, W_pad), mode='bilinear', align_corners=False)  # slightly off, but for visualizations this is okay
        buffer = io.BytesIO()
        plt.imsave(buffer, eigenvector.squeeze().numpy(), format='png')  # save to a temporary location
        buffer.seek(0)
        eigenvector_vis = Image.open(buffer).convert('RGB')
        # eigenvector_vis = TF.to_tensor(eigenvector_vis).unsqueeze(0)
        eigenvector_vis = np.array(eigenvector_vis)
        output_images.append(eigenvector_vis)
    # output_images = torch.cat(output_images, dim=0)
    # output_images = make_grid(output_images, nrow=8, pad_value=1)

    # # Postprocess for Gradio
    # output_images = np.array(TF.to_pil_image(output_images))
    print(f'{len(output_images)=}')
    return output_images

# Placeholders
input_placeholders = GradioInputImage(source="upload", tool="editor", type="pil")
# output_placeholders = GradioOutputImage(type="numpy", label=f"Eigenvectors")
output_placeholders = [GradioOutputImage(type="numpy", label=f"Eigenvector {i}") for i in range(K)]

# Metadata
examples = [f"examples/{stem}.jpg" for stem in [
    '2008_000099', '2008_000499', '2007_009446', '2007_001586', '2010_001256', '2008_000764', '2008_000705',  # '2007_000039'
]]

title = "Deep Spectral Segmentation"
description = "Deep spectral segmentation..."
thumbnail = "https://raw.githubusercontent.com/gradio-app/hub-echonet/master/thumbnail.png"

# Gradio
gr.Interface(
    segment, 
    input_placeholders,
    output_placeholders,
    examples=examples,
    allow_flagging=False,
    analytics_enabled=False,
	title=title,
    description=description,
    thumbnail=thumbnail
).launch()