File size: 7,293 Bytes
0d19d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gradio as gr
import torch
import torch.nn as nn
from torchvision import transforms
from PIL import Image
import cv2
import numpy as np
import requests
import os
from typing import Tuple, Dict

# CustomViT model definition
class PatchEmbedding(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_channels=3, embed_dim=768):
        super().__init__()
        self.img_size = img_size
        self.patch_size = patch_size
        self.n_patches = (img_size // patch_size) ** 2
        self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        x = self.proj(x)
        x = x.flatten(2)
        x = x.transpose(1, 2)
        return x

class Attention(nn.Module):
    def __init__(self, dim, n_heads=12, qkv_bias=True, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.n_heads = n_heads
        self.scale = (dim // n_heads) ** -0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.n_heads, C // self.n_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

class TransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim)
        self.attn = Attention(dim, n_heads=n_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        self.norm2 = nn.LayerNorm(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = nn.Sequential(
            nn.Linear(dim, mlp_hidden_dim),
            nn.GELU(),
            nn.Dropout(drop),
            nn.Linear(mlp_hidden_dim, dim),
            nn.Dropout(drop)
        )

    def forward(self, x):
        x = x + self.attn(self.norm1(x))
        x = x + self.mlp(self.norm2(x))
        return x

class CustomViT(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=2, embed_dim=768, depth=12, n_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0.):
        super().__init__()
        self.patch_embed = PatchEmbedding(img_size, patch_size, in_channels, embed_dim)
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, 1 + self.patch_embed.n_patches, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate)
        self.blocks = nn.ModuleList([
            TransformerBlock(embed_dim, n_heads, mlp_ratio, qkv_bias, drop_rate, drop_rate)
            for _ in range(depth)
        ])
        self.norm = nn.LayerNorm(embed_dim)
        self.head = nn.Linear(embed_dim, num_classes)

    def forward(self, x):
        B = x.shape[0]
        x = self.patch_embed(x)
        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x = x + self.pos_embed
        x = self.pos_drop(x)
        for block in self.blocks:
            x = block(x)
        x = self.norm(x)
        x = x[:, 0]
        x = self.head(x)
        return x

# Helper functions
def load_model(model_path: str) -> CustomViT:
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = CustomViT(num_classes=2)
    state_dict = torch.load(model_path, map_location=device)
    
    # Remove 'module.' prefix if present
    if all(k.startswith('module.') for k in state_dict.keys()):
        state_dict = {k[7:]: v for k, v in state_dict.items()}
    
    model.load_state_dict(state_dict)
    model.to(device)
    model.eval()
    return model

def preprocess_image(image: np.ndarray) -> torch.Tensor:
    # Convert numpy array to PIL Image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    return transform(image).unsqueeze(0)

def predict_image(image: np.ndarray, model: CustomViT) -> Tuple[np.ndarray, Dict[str, float]]:
    device = next(model.parameters()).device
    
    # Preprocess the image
    image_tensor = preprocess_image(image)
    
    # Make prediction
    with torch.no_grad():
        outputs = model(image_tensor.to(device))
        probabilities = torch.nn.functional.softmax(outputs, dim=1)[0]
        
    # Create visualization
    visualization = image.copy()
    height, width = visualization.shape[:2]
    
    # Add prediction overlay
    result = "Leprosy" if probabilities[0] > probabilities[1] else "No Leprosy"
    confidence = float(probabilities[0] if result == "Leprosy" else probabilities[1])
    
    # Add text to image
    color = (0, 0, 255) if result == "Leprosy" else (0, 255, 0)
    cv2.putText(visualization, f"{result}: {confidence:.2%}", 
                (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)
    
    # Convert BGR to RGB for Gradio
    visualization = cv2.cvtColor(visualization, cv2.COLOR_BGR2RGB)
    
    # Prepare labels dictionary
    labels = {
        "Leprosy": float(probabilities[0]),
        "No Leprosy": float(probabilities[1])
    }
    
    return visualization, labels

# Download example images
file_urls = [
    'https://www.dropbox.com/scl/fi/onrg1u9tqegh64nsfmxgr/lp2.jpg?rlkey=2vgw5n6abqmyismg16mdd1v3n&dl=1',
    'https://www.dropbox.com/scl/fi/xq103ic7ovuuei3l9e8jf/lp1.jpg?rlkey=g7d9khyyc6wplv0ljd4mcha60&dl=1',
    'https://www.dropbox.com/scl/fi/fagkh3gnio2pefdje7fb9/Non_Leprosy_210823_86_jpg.rf.5bb80a7704ecc6c8615574cad5d074c5.jpg?rlkey=ks8afue5gsx5jqvxj3u9mbjmg&dl=1',
]

def download_example_images():
    examples = []
    for i, url in enumerate(file_urls):
        filename = f"example_{i}.jpg"
        if not os.path.exists(filename):
            response = requests.get(url)
            with open(filename, 'wb') as f:
                f.write(response.content)
        examples.append(filename)
    return examples

# Main Gradio interface
def create_gradio_interface():
    # Load the model
    model = load_model('best_custom_vit_mo50.pth')
    
    # Create inference function
    def inference(image):
        return predict_image(image, model)
    
    # Download example images
    examples = download_example_images()
    
    # Create Gradio interface
    interface = gr.Interface(
        fn=inference,
        inputs=gr.Image(),
        outputs=[
            gr.Image(label="Prediction Visualization"),
            gr.Label(label="Classification Probabilities")
        ],
        title="Leprosy Detection using Vision Transformer",
        description="Upload an image to detect signs of leprosy using a Vision Transformer model.",
        examples=examples,
        cache_examples=False
    )
    
    return interface

if __name__ == "__main__":
    interface = create_gradio_interface()
    interface.launch()