File size: 7,293 Bytes
0d19d3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import gradio as gr
import torch
import torch.nn as nn
from torchvision import transforms
from PIL import Image
import cv2
import numpy as np
import requests
import os
from typing import Tuple, Dict
# CustomViT model definition
class PatchEmbedding(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_channels=3, embed_dim=768):
super().__init__()
self.img_size = img_size
self.patch_size = patch_size
self.n_patches = (img_size // patch_size) ** 2
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
x = self.proj(x)
x = x.flatten(2)
x = x.transpose(1, 2)
return x
class Attention(nn.Module):
def __init__(self, dim, n_heads=12, qkv_bias=True, attn_drop=0., proj_drop=0.):
super().__init__()
self.n_heads = n_heads
self.scale = (dim // n_heads) ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.n_heads, C // self.n_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class TransformerBlock(nn.Module):
def __init__(self, dim, n_heads, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.):
super().__init__()
self.norm1 = nn.LayerNorm(dim)
self.attn = Attention(dim, n_heads=n_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.norm2 = nn.LayerNorm(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = nn.Sequential(
nn.Linear(dim, mlp_hidden_dim),
nn.GELU(),
nn.Dropout(drop),
nn.Linear(mlp_hidden_dim, dim),
nn.Dropout(drop)
)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
class CustomViT(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=2, embed_dim=768, depth=12, n_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0.):
super().__init__()
self.patch_embed = PatchEmbedding(img_size, patch_size, in_channels, embed_dim)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, 1 + self.patch_embed.n_patches, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
self.blocks = nn.ModuleList([
TransformerBlock(embed_dim, n_heads, mlp_ratio, qkv_bias, drop_rate, drop_rate)
for _ in range(depth)
])
self.norm = nn.LayerNorm(embed_dim)
self.head = nn.Linear(embed_dim, num_classes)
def forward(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
for block in self.blocks:
x = block(x)
x = self.norm(x)
x = x[:, 0]
x = self.head(x)
return x
# Helper functions
def load_model(model_path: str) -> CustomViT:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CustomViT(num_classes=2)
state_dict = torch.load(model_path, map_location=device)
# Remove 'module.' prefix if present
if all(k.startswith('module.') for k in state_dict.keys()):
state_dict = {k[7:]: v for k, v in state_dict.items()}
model.load_state_dict(state_dict)
model.to(device)
model.eval()
return model
def preprocess_image(image: np.ndarray) -> torch.Tensor:
# Convert numpy array to PIL Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
return transform(image).unsqueeze(0)
def predict_image(image: np.ndarray, model: CustomViT) -> Tuple[np.ndarray, Dict[str, float]]:
device = next(model.parameters()).device
# Preprocess the image
image_tensor = preprocess_image(image)
# Make prediction
with torch.no_grad():
outputs = model(image_tensor.to(device))
probabilities = torch.nn.functional.softmax(outputs, dim=1)[0]
# Create visualization
visualization = image.copy()
height, width = visualization.shape[:2]
# Add prediction overlay
result = "Leprosy" if probabilities[0] > probabilities[1] else "No Leprosy"
confidence = float(probabilities[0] if result == "Leprosy" else probabilities[1])
# Add text to image
color = (0, 0, 255) if result == "Leprosy" else (0, 255, 0)
cv2.putText(visualization, f"{result}: {confidence:.2%}",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)
# Convert BGR to RGB for Gradio
visualization = cv2.cvtColor(visualization, cv2.COLOR_BGR2RGB)
# Prepare labels dictionary
labels = {
"Leprosy": float(probabilities[0]),
"No Leprosy": float(probabilities[1])
}
return visualization, labels
# Download example images
file_urls = [
'https://www.dropbox.com/scl/fi/onrg1u9tqegh64nsfmxgr/lp2.jpg?rlkey=2vgw5n6abqmyismg16mdd1v3n&dl=1',
'https://www.dropbox.com/scl/fi/xq103ic7ovuuei3l9e8jf/lp1.jpg?rlkey=g7d9khyyc6wplv0ljd4mcha60&dl=1',
'https://www.dropbox.com/scl/fi/fagkh3gnio2pefdje7fb9/Non_Leprosy_210823_86_jpg.rf.5bb80a7704ecc6c8615574cad5d074c5.jpg?rlkey=ks8afue5gsx5jqvxj3u9mbjmg&dl=1',
]
def download_example_images():
examples = []
for i, url in enumerate(file_urls):
filename = f"example_{i}.jpg"
if not os.path.exists(filename):
response = requests.get(url)
with open(filename, 'wb') as f:
f.write(response.content)
examples.append(filename)
return examples
# Main Gradio interface
def create_gradio_interface():
# Load the model
model = load_model('best_custom_vit_mo50.pth')
# Create inference function
def inference(image):
return predict_image(image, model)
# Download example images
examples = download_example_images()
# Create Gradio interface
interface = gr.Interface(
fn=inference,
inputs=gr.Image(),
outputs=[
gr.Image(label="Prediction Visualization"),
gr.Label(label="Classification Probabilities")
],
title="Leprosy Detection using Vision Transformer",
description="Upload an image to detect signs of leprosy using a Vision Transformer model.",
examples=examples,
cache_examples=False
)
return interface
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch()
|