choupijiang / app.py
luminoussg's picture
Update app.py
2582c35 verified
raw
history blame
6.04 kB
import gradio as gr
import os
import requests
import threading
from datetime import datetime
from typing import List, Dict, Any, Generator
from session_manager import SessionManager
# Initialize session manager and get HF API key
session_manager = SessionManager()
HF_API_KEY = os.getenv("HF_API_KEY")
# Model endpoints configuration
MODEL_ENDPOINTS = {
"Qwen2.5-72B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-72B-Instruct",
"Llama3.3-70B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Llama-3.3-70B-Instruct",
"Qwen2.5-Coder-32B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct",
}
def query_model(model_name: str, messages: List[Dict[str, str]]) -> str:
"""Query a single model with the chat history"""
endpoint = MODEL_ENDPOINTS[model_name]
headers = {
"Authorization": f"Bearer {HF_API_KEY}",
"Content-Type": "application/json"
}
# Build full conversation history for context
conversation = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
# Model-specific prompt formatting with full history
model_prompts = {
"Qwen2.5-72B-Instruct": (
f"<|im_start|>system\nCollaborate with other experts. Previous discussion:\n{conversation}<|im_end|>\n"
"<|im_start|>assistant\nMy analysis:"
),
"Llama3.3-70B-Instruct": (
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n"
f"Build upon this discussion:\n{conversation}<|eot_id|>\n"
"<|start_header_id|>assistant<|end_header_id|>\nMy contribution:"
),
"Qwen2.5-Coder-32B-Instruct": (
f"<|im_start|>system\nTechnical discussion context:\n{conversation}<|im_end|>\n"
"<|im_start|>assistant\nTechnical perspective:"
)
}
# Model-specific stop sequences
stop_sequences = {
"Qwen2.5-72B-Instruct": ["<|im_end|>", "<|endoftext|>"],
"Llama3.3-70B-Instruct": ["<|eot_id|>", "\nuser:"],
"Qwen2.5-Coder-32B-Instruct": ["<|im_end|>", "<|endoftext|>"]
}
payload = {
"inputs": model_prompts[model_name],
"parameters": {
"max_tokens": 2048,
"temperature": 0.7,
"stop_sequences": stop_sequences[model_name],
"return_full_text": False
}
}
try:
response = requests.post(endpoint, json=payload, headers=headers)
response.raise_for_status()
result = response.json()[0]['generated_text']
# Clean up response formatting
result = result.split('<|')[0] # Remove any remaining special tokens
result = result.replace('**', '').replace('##', '') # Remove markdown
result = result.strip() # Remove leading/trailing whitespace
return result # Return complete response
except Exception as e:
return f"{model_name} error: {str(e)}"
def respond(message: str, history: List[List[str]], session_id: str) -> Generator[str, None, None]:
"""Handle sequential model responses with session tracking"""
# Load session history
session = session_manager.load_session(session_id)
messages = [{"role": "user", "content": message}]
# Store user message and update session
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "user",
"content": message
})
session_manager.save_session(session_id, session)
# Get first model's response
response1 = query_model("Qwen2.5-Coder-32B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Qwen2.5-Coder-32B-Instruct",
"content": response1
})
session_manager.save_session(session_id, session)
yield f"**Qwen2.5-Coder-32B-Instruct**:\n{response1}"
# Add first response to context
messages.append({
"role": "assistant",
"content": f"Previous response: {response1}"
})
# Get second model's response
response2 = query_model("Qwen2.5-72B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Qwen2.5-72B-Instruct",
"content": response2
})
session_manager.save_session(session_id, session)
yield f"**Qwen2.5-72B-Instruct**:\n{response2}"
# Add second response to context
messages.append({
"role": "assistant",
"content": f"Previous responses: {response1}\n{response2}"
})
# Get final model's response
response3 = query_model("Llama3.3-70B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Llama3.3-70B-Instruct",
"content": response3
})
session_manager.save_session(session_id, session)
yield f"**Llama3.3-70B-Instruct**:\n{response3}"
# Create the Gradio interface with session management
with gr.Blocks(title="Multi-LLM Collaboration Chat") as demo:
session_id = gr.State(session_manager.create_session)
with gr.Row():
gr.Markdown("## Multi-LLM Collaboration Chat")
new_session_btn = gr.Button("πŸ†• New Session", variant="secondary")
with gr.Row():
gr.Markdown("A group chat with Qwen2.5-72B, Llama3.3-70B, and Qwen2.5-Coder-32B")
chat_interface = gr.ChatInterface(
respond,
examples=[
["How can I optimize Python code?"],
["Explain quantum computing basics"]
],
additional_inputs=[session_id]
)
def create_new_session():
new_id = session_manager.create_session()
return new_id, None
new_session_btn.click(
fn=create_new_session,
outputs=[session_id, chat_interface.chatbot],
show_progress=False
)
if __name__ == "__main__":
demo.launch(share=True)