choupijiang / app.py
luminoussg's picture
Update app.py
89c6fc8 verified
raw
history blame
6.61 kB
import gradio as gr
import os
import requests
import threading
from datetime import datetime
from typing import List, Dict, Any, Generator
from session_manager import SessionManager
# Initialize session manager and get HF API key
session_manager = SessionManager()
HF_API_KEY = os.getenv("HF_API_KEY")
# Model endpoints configuration
MODEL_ENDPOINTS = {
"Qwen2.5-72B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-72B-Instruct",
"Llama3.3-70B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Llama-3.3-70B-Instruct",
"Qwen2.5-Coder-32B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct",
}
def query_model(model_name: str, messages: List[Dict[str, str]]) -> str:
"""Query a single model with the chat history"""
endpoint = MODEL_ENDPOINTS[model_name]
headers = {
"Authorization": f"Bearer {HF_API_KEY}",
"Content-Type": "application/json"
}
# Build full conversation history for context
conversation = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
# Model-specific prompt formatting with full history
model_prompts = {
"Qwen2.5-72B-Instruct": (
f"<|im_start|>system\nCollaborate with other experts. Previous discussion:\n{conversation}<|im_end|>\n"
"<|im_start|>assistant\nMy analysis:"
),
"Llama3.3-70B-Instruct": (
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n"
f"Build upon this discussion:\n{conversation}<|eot_id|>\n"
"<|start_header_id|>assistant<|end_header_id|>\nMy contribution:"
),
"Qwen2.5-Coder-32B-Instruct": (
f"<|im_start|>system\nTechnical discussion context:\n{conversation}<|im_end|>\n"
"<|im_start|>assistant\nTechnical perspective:"
)
}
# Model-specific stop sequences
stop_sequences = {
"Qwen2.5-72B-Instruct": ["<|im_end|>", "<|endoftext|>"],
"Llama3.3-70B-Instruct": ["<|eot_id|>", "\nuser:"],
"Qwen2.5-Coder-32B-Instruct": ["<|im_end|>", "<|endoftext|>"]
}
payload = {
"inputs": model_prompts[model_name],
"parameters": {
"max_tokens": 2048,
"temperature": 0.7,
"stop_sequences": stop_sequences[model_name],
"return_full_text": False
}
}
try:
response = requests.post(endpoint, json=payload, headers=headers)
response.raise_for_status()
result = response.json()[0]['generated_text']
# Clean up response formatting
result = result.split('<|')[0] # Remove any remaining special tokens
result = result.replace('**', '').replace('##', '') # Remove markdown
result = result.strip() # Remove leading/trailing whitespace
return result # Return complete response
except Exception as e:
return f"{model_name} error: {str(e)}"
def respond(message: str, history: List[List[str]], session_id: str) -> str:
"""Handle sequential model responses with context preservation"""
# Load or initialize session
session = session_manager.load_session(session_id)
if not isinstance(session, dict) or "history" not in session:
session = {"history": []}
# Build context from session history
messages = []
for entry in session["history"]:
if entry["type"] == "user":
messages.append({"role": "user", "content": entry["content"]})
else:
messages.append({"role": "assistant", "content": f"{entry['model']}: {entry['content']}"})
# Add current message
messages.append({"role": "user", "content": message})
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "user",
"content": message
})
responses = []
# First model response
response1 = query_model("Qwen2.5-Coder-32B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Qwen2.5-Coder-32B-Instruct",
"content": response1
})
messages.append({"role": "assistant", "content": f"Qwen2.5-Coder-32B-Instruct: {response1}"})
responses.append(f"πŸ”΅ **Qwen2.5-Coder-32B-Instruct**\n{response1}")
# Second model response
response2 = query_model("Qwen2.5-72B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Qwen2.5-72B-Instruct",
"content": response2
})
messages.append({"role": "assistant", "content": f"Qwen2.5-72B-Instruct: {response2}"})
responses.append(f"🟣 **Qwen2.5-72B-Instruct**\n{response2}")
# Final model response
response3 = query_model("Llama3.3-70B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Llama3.3-70B-Instruct",
"content": response3
})
messages.append({"role": "assistant", "content": f"Llama3.3-70B-Instruct: {response3}"})
responses.append(f"🟑 **Llama3.3-70B-Instruct**\n{response3}")
# Save final session state
session_manager.save_session(session_id, session)
# Return responses
return "\n\n".join(responses)
# Custom CSS for styling
css = """
.message { padding: 15px; margin: 10px 0; border-radius: 10px; }
.assistant { background: #f8fafc; border-left: 4px solid #3b82f6; }
.user { background: #eff6ff; border-left: 4px solid #60a5fa; }
.model-name { font-weight: 600; color: #1e40af; margin-bottom: 8px; }
.thinking { color: #6b7280; font-style: italic; }
"""
# Create the Gradio interface
demo = gr.ChatInterface(
fn=respond,
title="Multi-LLM Collaboration Chat",
description="Experience collaborative AI thinking with three powerful language models",
examples=[
["Explain how quantum computing works"],
["Write a Python function to find prime numbers"],
],
additional_inputs=[gr.State(session_manager.create_session)],
chatbot=gr.Chatbot(
height=600,
show_label=False,
bubble_full_width=False,
show_copy_button=True,
container=True,
sanitize_html=False,
render_markdown=True
),
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="indigo",
neutral_hue="slate",
font=("Inter", "sans-serif"),
),
css=css,
)
if __name__ == "__main__":
demo.launch(share=True)