choupijiang / app.py
luminoussg's picture
Update app.py
ab9f329 verified
raw
history blame
7.12 kB
import gradio as gr
import os
import requests
import threading
from datetime import datetime
from typing import List, Dict, Any, Generator
from session_manager import SessionManager
# Initialize session manager and get HF API key
session_manager = SessionManager()
HF_API_KEY = os.getenv("HF_API_KEY")
# Model configurations
MODEL_ENDPOINTS = {
"Qwen2.5-72B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-72B-Instruct",
"Llama3.3-70B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Llama-3.3-70B-Instruct",
"Qwen2.5-Coder-32B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct",
}
MODEL_CONTEXT_WINDOWS = {
"Qwen2.5-72B-Instruct": 128000,
"Llama3.3-70B-Instruct": 128000,
"Qwen2.5-Coder-32B-Instruct": 128000,
}
MODEL_MAX_TOKENS = {
"Qwen2.5-72B-Instruct": 8192,
"Llama3.3-70B-Instruct": 2048,
"Qwen2.5-Coder-32B-Instruct": 8192,
}
def query_model(model_name: str, messages: List[Dict[str, str]]) -> str:
"""Query a single model with the chat history"""
endpoint = MODEL_ENDPOINTS[model_name]
headers = {
"Authorization": f"Bearer {HF_API_KEY}",
"Content-Type": "application/json"
}
# Build full conversation history for context
conversation = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
# Model-specific prompt formatting with full history
model_prompts = {
"Qwen2.5-72B-Instruct": (
f"<|im_start|>system\nCollaborate with other experts. Previous discussion:\n{conversation}<|im_end|>\n"
"<|im_start|>assistant\nMy analysis:"
),
"Llama3.3-70B-Instruct": (
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n"
f"Build upon this discussion:\n{conversation}<|eot_id|>\n"
"<|start_header_id|>assistant<|end_header_id|>\nMy contribution:"
),
"Qwen2.5-Coder-32B-Instruct": (
f"<|im_start|>system\nTechnical discussion context:\n{conversation}<|im_end|>\n"
"<|im_start|>assistant\nTechnical perspective:"
)
}
# Model-specific stop sequences
stop_sequences = {
"Qwen2.5-72B-Instruct": ["<|im_end|>", "<|endoftext|>"],
"Llama3.3-70B-Instruct": ["<|eot_id|>", "\nuser:"],
"Qwen2.5-Coder-32B-Instruct": ["<|im_end|>", "<|endoftext|>"]
}
payload = {
"inputs": model_prompts[model_name],
"parameters": {
"max_tokens": MODEL_MAX_TOKENS[model_name],
"temperature": 0.6,
"stop_sequences": stop_sequences[model_name],
"return_full_text": False
}
}
try:
response = requests.post(endpoint, json=payload, headers=headers)
response.raise_for_status()
result = response.json()[0]['generated_text']
# Clean up response formatting
result = result.split('<|')[0] # Remove any remaining special tokens
result = result.replace('**', '').replace('##', '') # Remove markdown
result = result.strip() # Remove leading/trailing whitespace
return result # Return complete response
except Exception as e:
return f"{model_name} error: {str(e)}"
def respond(message: str, history: List[List[str]], session_id: str) -> Generator[str, None, None]:
"""Handle sequential model responses with context preservation"""
# Load or initialize session
session = session_manager.load_session(session_id)
if not isinstance(session, dict) or "history" not in session:
session = {"history": []}
# Build context from session history
messages = []
for entry in session["history"]:
if entry["type"] == "user":
messages.append({"role": "user", "content": entry["content"]})
else:
messages.append({"role": "assistant", "content": f"{entry['model']}: {entry['content']}"})
# Add current message
messages.append({"role": "user", "content": message})
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "user",
"content": message
})
# First model
yield "πŸ”΅ Qwen2.5-Coder-32B-Instruct is thinking..."
response1 = query_model("Qwen2.5-Coder-32B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Qwen2.5-Coder-32B-Instruct",
"content": response1
})
messages.append({"role": "assistant", "content": f"Qwen2.5-Coder-32B-Instruct: {response1}"})
yield f"πŸ”΅ **Qwen2.5-Coder-32B-Instruct**\n{response1}"
# Second model
yield f"πŸ”΅ **Qwen2.5-Coder-32B-Instruct**\n{response1}\n\n🟣 Qwen2.5-72B-Instruct is thinking..."
response2 = query_model("Qwen2.5-72B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Qwen2.5-72B-Instruct",
"content": response2
})
messages.append({"role": "assistant", "content": f"Qwen2.5-72B-Instruct: {response2}"})
yield f"πŸ”΅ **Qwen2.5-Coder-32B-Instruct**\n{response1}\n\n🟣 **Qwen2.5-72B-Instruct**\n{response2}"
# Final model
yield f"πŸ”΅ **Qwen2.5-Coder-32B-Instruct**\n{response1}\n\n🟣 **Qwen2.5-72B-Instruct**\n{response2}\n\n🟑 Llama3.3-70B-Instruct is thinking..."
response3 = query_model("Llama3.3-70B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Llama3.3-70B-Instruct",
"content": response3
})
messages.append({"role": "assistant", "content": f"Llama3.3-70B-Instruct: {response3}"})
# Save final session state
session_manager.save_session(session_id, session)
# Return final combined response
yield f"πŸ”΅ **Qwen2.5-Coder-32B-Instruct**\n{response1}\n\n🟣 **Qwen2.5-72B-Instruct**\n{response2}\n\n🟑 **Llama3.3-70B-Instruct**\n{response3}"
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Multi-LLM Collaboration Chat")
with gr.Row():
session_id = gr.State(session_manager.create_session)
new_session = gr.Button("πŸ”„ New Session")
chatbot = gr.Chatbot(height=600)
msg = gr.Textbox(label="Message")
def on_new_session():
new_id = session_manager.create_session()
return new_id, []
def user(message, history, session_id):
return "", history + [[message, None]]
def bot(history, session_id):
if history and history[-1][1] is None:
message = history[-1][0]
for response in respond(message, history[:-1], session_id):
history[-1][1] = response
yield history
msg.submit(user, [msg, chatbot, session_id], [msg, chatbot]).then(
bot, [chatbot, session_id], [chatbot]
)
new_session.click(on_new_session, None, [session_id, chatbot])
if __name__ == "__main__":
demo.launch(share=True)