Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
# Get the Hugging Face API key from Spaces secrets. | |
HF_API_KEY = os.getenv("HF_API_KEY") | |
# Model endpoints on Hugging Face | |
MODEL_ENDPOINTS = { | |
"Qwen2.5-72B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-72B-Instruct", | |
"Llama3.3-70B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Llama-3.3-70B-Instruct", | |
"Qwen2.5-Coder-32B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct", | |
} | |
def query_model(prompt, model_endpoint): | |
""" | |
Query a model via Hugging Face Inference API using a requests.post call. | |
This assumes an OpenAI-compatible endpoint structure. | |
""" | |
headers = { | |
"Authorization": f"Bearer {HF_API_KEY}", | |
"Content-Type": "application/json" | |
} | |
data = { | |
"messages": [{"role": "user", "content": prompt}], | |
"max_tokens": 512, | |
"temperature": 0.7 | |
} | |
response = requests.post(model_endpoint, headers=headers, json=data) | |
try: | |
result = response.json() | |
except Exception: | |
return f"Error: Unable to parse JSON. Response: {response.text}" | |
if "error" in result: | |
return f"Error: {result['error']}" | |
try: | |
return result["choices"][0]["message"]["content"] | |
except Exception: | |
return f"Error: Unexpected response format: {result}" | |
def chat_with_models(user_input, history): | |
responses = [] | |
for model_name, endpoint in MODEL_ENDPOINTS.items(): | |
model_response = query_model(user_input, endpoint) | |
responses.append(f"**{model_name}**: {model_response}") | |
combined_answer = "\n\n".join(responses) | |
history.append((user_input, combined_answer)) | |
return history, history | |
with gr.Blocks() as demo: | |
gr.Markdown("# Multi-LLM Chatbot using Hugging Face Inference API") | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox(label="Your Message") | |
clear = gr.Button("Clear") | |
def clear_chat(): | |
return [], [] | |
msg.submit(fn=chat_with_models, inputs=[msg, chatbot], outputs=[chatbot, chatbot]) | |
clear.click(fn=clear_chat, outputs=[chatbot, chatbot]) | |
demo.launch() | |