luminoussg commited on
Commit
6733659
Β·
verified Β·
1 Parent(s): c9870b1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -29
app.py CHANGED
@@ -22,19 +22,23 @@ def query_model(model_name: str, messages: List[Dict[str, str]]) -> str:
22
  "Content-Type": "application/json"
23
  }
24
 
25
- # Model-specific prompt formatting
 
 
 
26
  model_prompts = {
27
  "Qwen2.5-72B-Instruct": (
28
- f"<|im_start|>user\n{messages[-1]['content']}<|im_end|>\n<|im_start|>assistant\n"
 
29
  ),
30
  "Llama3.3-70B-Instruct": (
31
- "<|begin_of_text|>"
32
- "<|start_header_id|>user<|end_header_id|>\n\n"
33
- f"{messages[-1]['content']}<|eot_id|>"
34
- "<|start_header_id|>assistant<|end_header_id|>\n\n"
35
  ),
36
  "Qwen2.5-Coder-32B-Instruct": (
37
- f"<|im_start|>user\n{messages[-1]['content']}<|im_end|>\n<|im_start|>assistant\n"
 
38
  )
39
  }
40
 
@@ -68,33 +72,31 @@ def query_model(model_name: str, messages: List[Dict[str, str]]) -> str:
68
  return f"{model_name} error: {str(e)}"
69
 
70
  def respond(message: str, history: List[List[str]]) -> str:
71
- """Handle chat responses from all models"""
72
- # Prepare messages in OpenAI format
73
  messages = [{"role": "user", "content": message}]
 
74
 
75
- # Create threads for concurrent model queries
76
- threads = []
77
- results = {}
78
-
79
- def get_model_response(model_name):
80
- results[model_name] = query_model(model_name, messages)
81
-
82
- for model_name in MODEL_ENDPOINTS:
83
- thread = threading.Thread(target=get_model_response, args=(model_name,))
84
- thread.start()
85
- threads.append(thread)
86
-
87
- # Wait for all threads to complete
88
- for thread in threads:
89
- thread.join()
90
 
91
- # Format responses from all models
92
- responses = []
93
- for model_name, response in results.items():
 
94
  responses.append(f"**{model_name}**:\n{response}")
 
 
 
 
 
 
95
 
96
- # Format responses with clear separation
97
- return "\n\n----------------------------------------\n\n".join(responses)
98
 
99
  # Create the Gradio interface
100
  chat_interface = gr.ChatInterface(
 
22
  "Content-Type": "application/json"
23
  }
24
 
25
+ # Build full conversation history for context
26
+ conversation = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
27
+
28
+ # Model-specific prompt formatting with full history
29
  model_prompts = {
30
  "Qwen2.5-72B-Instruct": (
31
+ f"<|im_start|>system\nCollaborate with other experts. Previous discussion:\n{conversation}<|im_end|>\n"
32
+ "<|im_start|>assistant\nMy analysis:"
33
  ),
34
  "Llama3.3-70B-Instruct": (
35
+ "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n"
36
+ f"Build upon this discussion:\n{conversation}<|eot_id|>\n"
37
+ "<|start_header_id|>assistant<|end_header_id|>\nMy contribution:"
 
38
  ),
39
  "Qwen2.5-Coder-32B-Instruct": (
40
+ f"<|im_start|>system\nTechnical discussion context:\n{conversation}<|im_end|>\n"
41
+ "<|im_start|>assistant\nTechnical perspective:"
42
  )
43
  }
44
 
 
72
  return f"{model_name} error: {str(e)}"
73
 
74
  def respond(message: str, history: List[List[str]]) -> str:
75
+ """Handle sequential model responses with collaboration"""
 
76
  messages = [{"role": "user", "content": message}]
77
+ responses = []
78
 
79
+ # Define processing order
80
+ processing_order = [
81
+ "Qwen2.5-Coder-32B-Instruct",
82
+ "Qwen2.5-72B-Instruct",
83
+ "Llama3.3-70B-Instruct"
84
+ ]
 
 
 
 
 
 
 
 
 
85
 
86
+ # Process models in sequence with accumulating context
87
+ for model_name in processing_order:
88
+ # Get current model's response
89
+ response = query_model(model_name, messages)
90
  responses.append(f"**{model_name}**:\n{response}")
91
+
92
+ # Add model's response to message history for next model
93
+ messages.append({
94
+ "role": "assistant",
95
+ "content": f"{model_name} response: {response}"
96
+ })
97
 
98
+ # Format output with collaboration timeline
99
+ return "\n\n→→→ Next Model Builds Upon This →→→\n\n".join(responses)
100
 
101
  # Create the Gradio interface
102
  chat_interface = gr.ChatInterface(