Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -71,53 +71,46 @@ def query_model(model_name: str, messages: List[Dict[str, str]]) -> str:
|
|
71 |
except Exception as e:
|
72 |
return f"{model_name} error: {str(e)}"
|
73 |
|
74 |
-
class ConversationState:
|
75 |
-
def __init__(self):
|
76 |
-
self.messages = []
|
77 |
-
|
78 |
-
def add_user_message(self, message: str):
|
79 |
-
self.messages.append({"role": "user", "content": message})
|
80 |
-
|
81 |
-
def add_assistant_message(self, model_name: str, message: str):
|
82 |
-
self.messages.append({
|
83 |
-
"role": "assistant",
|
84 |
-
"model": model_name,
|
85 |
-
"content": message
|
86 |
-
})
|
87 |
-
|
88 |
-
def get_context(self) -> List[Dict[str, str]]:
|
89 |
-
return [
|
90 |
-
{
|
91 |
-
"role": msg["role"],
|
92 |
-
"content": f"{msg.get('model', '')}: {msg['content']}" if msg["role"] == "assistant" else msg["content"]
|
93 |
-
}
|
94 |
-
for msg in self.messages
|
95 |
-
]
|
96 |
-
|
97 |
-
conversation_state = ConversationState()
|
98 |
-
|
99 |
def respond(message: str, history: List[List[str]]) -> str:
|
100 |
-
"""Handle sequential model responses with continuous
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
# Add current message
|
103 |
-
|
104 |
-
current_context = conversation_state.get_context()
|
105 |
|
106 |
# Get first model's response
|
107 |
-
response1 = query_model("Qwen2.5-Coder-32B-Instruct",
|
108 |
-
conversation_state.add_assistant_message("Qwen2.5-Coder-32B-Instruct", response1)
|
109 |
yield f"**Qwen2.5-Coder-32B-Instruct**:\n{response1}"
|
110 |
|
111 |
-
#
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
115 |
yield f"**Qwen2.5-72B-Instruct**:\n{response2}"
|
116 |
|
117 |
-
#
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
121 |
yield f"**Llama3.3-70B-Instruct**:\n{response3}"
|
122 |
|
123 |
# Create the Gradio interface
|
|
|
71 |
except Exception as e:
|
72 |
return f"{model_name} error: {str(e)}"
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
def respond(message: str, history: List[List[str]]) -> str:
|
75 |
+
"""Handle sequential model responses with continuous context"""
|
76 |
+
|
77 |
+
# Build full conversation history from previous interactions
|
78 |
+
conversation = []
|
79 |
+
if history:
|
80 |
+
for user_msg, assistant_msg in history:
|
81 |
+
conversation.append({"role": "user", "content": user_msg})
|
82 |
+
if assistant_msg:
|
83 |
+
# Split assistant message into individual model responses
|
84 |
+
responses = assistant_msg.split("\n\n")
|
85 |
+
for resp in responses:
|
86 |
+
if resp:
|
87 |
+
conversation.append({"role": "assistant", "content": resp})
|
88 |
|
89 |
+
# Add current message
|
90 |
+
conversation.append({"role": "user", "content": message})
|
|
|
91 |
|
92 |
# Get first model's response
|
93 |
+
response1 = query_model("Qwen2.5-Coder-32B-Instruct", conversation)
|
|
|
94 |
yield f"**Qwen2.5-Coder-32B-Instruct**:\n{response1}"
|
95 |
|
96 |
+
# Add first response to context
|
97 |
+
conversation.append({
|
98 |
+
"role": "assistant",
|
99 |
+
"content": f"**Qwen2.5-Coder-32B-Instruct**:\n{response1}"
|
100 |
+
})
|
101 |
+
|
102 |
+
# Get second model's response
|
103 |
+
response2 = query_model("Qwen2.5-72B-Instruct", conversation)
|
104 |
yield f"**Qwen2.5-72B-Instruct**:\n{response2}"
|
105 |
|
106 |
+
# Add second response to context
|
107 |
+
conversation.append({
|
108 |
+
"role": "assistant",
|
109 |
+
"content": f"**Qwen2.5-72B-Instruct**:\n{response2}"
|
110 |
+
})
|
111 |
+
|
112 |
+
# Get final model's response
|
113 |
+
response3 = query_model("Llama3.3-70B-Instruct", conversation)
|
114 |
yield f"**Llama3.3-70B-Instruct**:\n{response3}"
|
115 |
|
116 |
# Create the Gradio interface
|