import gradio as gr import openai # We assume the Hugging Face Inference API is OpenAI-compatible. # For each LLM, set openai.api_base to the model's endpoint and then call openai.ChatCompletion. # Your Hugging Face API key HF_API_KEY = "hf_1234" # Model endpoints on Hugging Face MODEL_ENDPOINTS = { "Qwen2.5-72B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-72B-Instruct", "Llama3.3-70B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Llama-3.3-70B-Instruct", "Qwen2.5-Coder-32B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct", } # Query a specific model using OpenAI-compatible ChatCompletion def query_model(prompt, model_endpoint): openai.api_key = HF_API_KEY openai.api_base = model_endpoint response = openai.ChatCompletion.create( model="any-model-placeholder", # placeholder name, not actually used by the HF endpoint messages=[{"role": "user", "content": prompt}], max_tokens=512, temperature=0.7 ) return response.choices[0].message["content"] def chat_with_models(user_input, history): # Let each model provide its own contribution responses = [] for model_name, endpoint in MODEL_ENDPOINTS.items(): model_response = query_model(user_input, endpoint) responses.append(f"**{model_name}**: {model_response}") # Combine all responses in a single answer combined_answer = "\n\n".join(responses) history.append((user_input, combined_answer)) return history, history with gr.Blocks() as demo: gr.Markdown("# Multi-LLM Chatbot using Hugging Face Inference API") chatbot = gr.Chatbot() msg = gr.Textbox(label="Your Message") clear = gr.Button("Clear") def clear_chat(): return [], [] msg.submit(chat_with_models, [msg, chatbot], [chatbot, chatbot]) clear.click(fn=clear_chat, outputs=[chatbot, chatbot]) demo.launch()