Spaces:
Paused
Paused
File size: 11,497 Bytes
7e945b0 9c1dc25 3e906aa 9c1dc25 f7fcdf0 4dc298a 9c1dc25 f7fcdf0 9c1dc25 4dc298a 3e906aa 9c1dc25 ad7e125 6572ab5 4dc298a edf1813 6572ab5 4dc298a 37768c6 4dc298a 37768c6 4dc298a 6572ab5 4dc298a 6572ab5 4dc298a 9c1dc25 f7fcdf0 4dc298a 6572ab5 4dc298a f7fcdf0 1a72c00 ad7e125 1a72c00 4dc298a f7fcdf0 7cd0827 f7fcdf0 f1ab394 1a72c00 6572ab5 f7fcdf0 85cee9b 1a72c00 4dc298a f7fcdf0 4dc298a f7fcdf0 4dc298a 7cd0827 4dc298a f7fcdf0 1a72c00 95d080f 1a72c00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import gradio as gr
import cv2
import os
import subprocess
from ultralytics import YOLO
from ultralytics.solutions import object_counter
import spaces # Import spaces for ZeroGPU integration
# Initialize the YOLO model
MODEL = "yolov8n.pt"
model = YOLO(MODEL)
model.fuse()
dict_classes = model.model.names
# Auxiliary function to resize frame
def resize_frame(frame, scale_percent):
width = int(frame.shape[1] * scale_percent / 100)
height = int(frame.shape[0] * scale_percent / 100)
dim = (width, height)
resized = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)
return resized
def count_frames(video_file):
cap = cv2.VideoCapture(video_file)
if not cap.isOpened():
raise ValueError("Failed to open video file")
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
return total_frames
def file_size_check(file_path, max_size_mb=500):
if os.path.getsize(file_path) > max_size_mb * 1024 * 1024:
raise ValueError("File size exceeds the maximum limit of {} MB".format(max_size_mb))
@spaces.GPU
def process_video(video_file, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness, draw_tracks, view_img, view_in_counts, view_out_counts, track_thickness, region_thickness, line_dist_thresh, persist, conf, iou, classes, verbose, progress):
# Check file size
file_size_check(video_file)
# Ensure classes is a list of integers
classes = [int(x) for x in classes.split(',') if x.strip().isdigit()] if classes else None
line_points = [(line_start_x, line_start_y), (line_end_x, line_end_y)]
cap = cv2.VideoCapture(video_file)
if not cap.isOpened():
raise ValueError("Failed to open video file")
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
tmp_output_path = "processed_output_temp.mp4"
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH) * scale_percent / 100)
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT) * scale_percent / 100)
fps = int(cap.get(cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter(tmp_output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
counter = object_counter.ObjectCounter(
classes_names=model.names,
view_img=view_img,
reg_pts=line_points,
draw_tracks=draw_tracks,
line_thickness=int(line_thickness),
track_thickness=int(track_thickness),
region_thickness=int(region_thickness),
line_dist_thresh=line_dist_thresh,
view_in_counts=view_in_counts,
view_out_counts=view_out_counts,
count_reg_color=(255, 0, 255), # Magenta
track_color=(0, 255, 0), # Green
count_txt_color=(255, 255, 255), # White
count_bg_color=(50, 50, 50) # Dark gray
)
prev_frame = None
prev_keypoints = None
processed_frames = 0
try:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = resize_frame(frame, scale_percent)
# Adjust line points based on scaling
scaled_line_points = [(int(x * scale_percent / 100), int(y * scale_percent / 100)) for x, y in line_points]
for point1, point2 in zip(scaled_line_points[:-1], scaled_line_points[1:]):
cv2.line(frame, tuple(map(int, point1)), tuple(map(int, point2)), (255, 255, 0), int(line_thickness))
tracks = model.track(frame, persist=persist, conf=conf, iou=iou, classes=classes, verbose=verbose)
# Update the counter with the current frame and tracks
frame = counter.start_counting(frame, tracks)
# Check if the previous frame is initialized for optical flow calculation
if prev_frame is not None:
try:
prev_frame_resized = resize_frame(prev_frame, scale_percent)
matched_keypoints, status, _ = cv2.calcOpticalFlowPyrLK(prev_frame_resized, frame, prev_keypoints, None)
prev_keypoints = matched_keypoints
except cv2.error as e:
print(f"Error in optical flow calculation: {e}")
prev_frame = frame.copy()
prev_keypoints = cv2.goodFeaturesToTrack(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)
video_writer.write(frame)
# Update progress
processed_frames += 1
progress(processed_frames / total_frames)
finally:
cap.release()
video_writer.release()
# Reduce the resolution of the video for download
output_path = "processed_output.mp4"
if h > 1080:
resolution = "1920x1080"
else:
resolution = "1280x720"
try:
subprocess.run(
["ffmpeg", "-y", "-i", tmp_output_path, "-vf", f"scale={resolution}", "-crf", "18", "-preset", "veryfast", "-hide_banner", "-loglevel", "error", output_path],
check=True
)
except subprocess.CalledProcessError as e:
raise RuntimeError(f"Error during video processing: {e}")
if os.path.exists(tmp_output_path):
os.remove(tmp_output_path)
return output_path
def preview_line(video_file, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness):
cap = cv2.VideoCapture(video_file)
if not cap.isOpened():
raise ValueError("Failed to read video frame")
ret, frame = cap.read()
if not ret:
raise ValueError("Failed to read video frame")
frame = resize_frame(frame, scale_percent)
line_points = [(line_start_x, line_start_y), (line_end_x, line_end_y)]
scaled_line_points = [(int(x * scale_percent / 100), int(y * scale_percent / 100)) for x, y in line_points]
for point1, point2 in zip(scaled_line_points[:-1], scaled_line_points[1:]):
cv2.line(frame, tuple(map(int, point1)), tuple(map(int, point2)), (255, 255, 0), int(line_thickness))
preview_path = "preview_line.jpg"
cv2.imwrite(preview_path, frame)
return preview_path
def gradio_app(video, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness, draw_tracks, view_img, view_in_counts, view_out_counts, track_thickness, region_thickness, line_dist_thresh, persist, conf, iou, classes_to_track, verbose):
# Save the uploaded video to the main folder
main_folder_video_path = "vehicle-counting.mp4"
with open(main_folder_video_path, "wb") as f:
f.write(open(video.name, "rb").read())
progress = gr.Progress()
total_frames = count_frames(main_folder_video_path)
output_path = process_video(main_folder_video_path, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, int(line_thickness), draw_tracks, view_img, view_in_counts, view_out_counts, int(track_thickness), int(region_thickness), line_dist_thresh, persist, conf, iou, classes_to_track, verbose, progress)
return output_path, output_path
def update_preview(video, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness):
return preview_line(video.name, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, int(line_thickness))
def set_4k_coordinates():
return 0, 1500, 3840, 1500
def set_1080p_coordinates():
return 0, 700, 1920, 700
def use_example_video():
example_video_path = "vehicle-counting.mp4"
return example_video_path
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
video_input = gr.File(label="Upload your video") # Removed max_size parameter
example_button = gr.Button("Use Example Video")
with gr.Row():
set_4k_button = gr.Button("4K")
set_1080p_button = gr.Button("1080p")
line_start_x = gr.Number(label="Line Start X", value=500, precision=0)
line_start_y = gr.Number(label="Line Start Y", value=1500, precision=0)
line_end_x = gr.Number(label="Line End X", value=3400, precision=0)
line_end_y = gr.Number(label="Line End Y", value=1500, precision=0)
line_thickness = gr.Slider(minimum=1, maximum=10, value=2, label="Line Thickness")
draw_tracks = gr.Checkbox(label="Draw Tracks", value=True)
view_img = gr.Checkbox(label="Display Image with Annotations", value=True)
view_in_counts = gr.Checkbox(label="Display In-Counts", value=True)
view_out_counts = gr.Checkbox(label="Display Out-Counts", value=True)
track_thickness = gr.Slider(minimum=1, maximum=10, value=2, label="Track Thickness")
region_thickness = gr.Slider(minimum=1, maximum=10, value=5, label="Region Thickness")
line_dist_thresh = gr.Slider(minimum=5, maximum=50, value=15, label="Line Distance Threshold")
persist = gr.Checkbox(label="Persist Tracks", value=True)
conf = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Confidence Threshold")
iou = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.05, label="IOU Threshold")
classes_to_track = gr.Textbox(label="Classes to Track (comma-separated ids)", value="2,3,5,7")
verbose = gr.Checkbox(label="Verbose Tracking", value=True)
scale_percent = gr.Slider(minimum=10, maximum=100, value=100, step=10, label="Scale Percentage")
process_button = gr.Button("Process Video")
with gr.Column(scale=2):
preview_image = gr.Image(label="Preview Line")
video_output = gr.Video(label="Processed Video")
download_button = gr.File(label="Download Processed Video")
def update_preview_and_display(video, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness):
preview_path = update_preview(video, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness)
return preview_path
video_input.change(update_preview_and_display, inputs=[video_input, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness], outputs=preview_image)
for component in [scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness, draw_tracks, view_img, view_in_counts, view_out_counts, track_thickness, region_thickness, line_dist_thresh, persist, conf, iou, classes_to_track, verbose]:
component.change(update_preview_and_display, inputs=[video_input, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness], outputs=preview_image)
set_4k_button.click(lambda: set_4k_coordinates(), outputs=[line_start_x, line_start_y, line_end_x, line_end_y])
set_1080p_button.click(lambda: set_1080p_coordinates(), outputs=[line_start_x, line_start_y, line_end_x, line_end_y])
def clear_previous_video():
return None, None
process_button.click(clear_previous_video, outputs=[video_output, download_button], queue=False)
process_button.click(gradio_app, inputs=[video_input, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness, draw_tracks, view_img, view_in_counts, view_out_counts, track_thickness, region_thickness, line_dist_thresh, persist, conf, iou, classes_to_track, verbose], outputs=[video_output, download_button])
# Add the example button right below the video input
example_button.click(use_example_video, outputs=[video_input])
demo.launch() |