File size: 11,497 Bytes
7e945b0
9c1dc25
 
3e906aa
9c1dc25
f7fcdf0
4dc298a
9c1dc25
f7fcdf0
 
 
 
9c1dc25
4dc298a
 
3e906aa
9c1dc25
 
 
 
 
 
 
ad7e125
 
 
 
 
 
 
 
6572ab5
 
 
 
4dc298a
edf1813
6572ab5
 
 
4dc298a
 
 
 
 
 
 
 
 
37768c6
4dc298a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37768c6
4dc298a
6572ab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dc298a
 
 
 
 
 
 
 
6572ab5
 
 
 
 
 
 
 
 
 
4dc298a
 
9c1dc25
f7fcdf0
4dc298a
6572ab5
 
 
4dc298a
 
 
 
 
 
 
 
 
 
 
 
 
f7fcdf0
 
1a72c00
 
 
 
 
ad7e125
1a72c00
 
4dc298a
f7fcdf0
 
7cd0827
f7fcdf0
 
 
 
 
 
f1ab394
1a72c00
 
 
 
6572ab5
f7fcdf0
 
85cee9b
1a72c00
4dc298a
 
 
 
 
 
 
f7fcdf0
 
 
 
 
 
 
 
 
 
 
4dc298a
f7fcdf0
 
 
 
 
 
 
 
4dc298a
7cd0827
 
4dc298a
 
 
 
 
 
 
 
 
 
 
 
f7fcdf0
1a72c00
 
 
95d080f
1a72c00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
import cv2
import os
import subprocess
from ultralytics import YOLO
from ultralytics.solutions import object_counter
import spaces  # Import spaces for ZeroGPU integration

# Initialize the YOLO model
MODEL = "yolov8n.pt"
model = YOLO(MODEL)
model.fuse()

dict_classes = model.model.names

# Auxiliary function to resize frame
def resize_frame(frame, scale_percent):
    width = int(frame.shape[1] * scale_percent / 100)
    height = int(frame.shape[0] * scale_percent / 100)
    dim = (width, height)
    resized = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)
    return resized

def count_frames(video_file):
    cap = cv2.VideoCapture(video_file)
    if not cap.isOpened():
        raise ValueError("Failed to open video file")
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    cap.release()
    return total_frames

def file_size_check(file_path, max_size_mb=500):
    if os.path.getsize(file_path) > max_size_mb * 1024 * 1024:
        raise ValueError("File size exceeds the maximum limit of {} MB".format(max_size_mb))

@spaces.GPU
def process_video(video_file, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness, draw_tracks, view_img, view_in_counts, view_out_counts, track_thickness, region_thickness, line_dist_thresh, persist, conf, iou, classes, verbose, progress):
    # Check file size
    file_size_check(video_file)
    
    # Ensure classes is a list of integers
    classes = [int(x) for x in classes.split(',') if x.strip().isdigit()] if classes else None
    
    line_points = [(line_start_x, line_start_y), (line_end_x, line_end_y)]
    
    cap = cv2.VideoCapture(video_file)
    if not cap.isOpened():
        raise ValueError("Failed to open video file")
    
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    tmp_output_path = "processed_output_temp.mp4"
    w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH) * scale_percent / 100)
    h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT) * scale_percent / 100)
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    video_writer = cv2.VideoWriter(tmp_output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))

    counter = object_counter.ObjectCounter(
        classes_names=model.names,
        view_img=view_img,
        reg_pts=line_points,
        draw_tracks=draw_tracks,
        line_thickness=int(line_thickness),
        track_thickness=int(track_thickness),
        region_thickness=int(region_thickness),
        line_dist_thresh=line_dist_thresh,
        view_in_counts=view_in_counts,
        view_out_counts=view_out_counts,
        count_reg_color=(255, 0, 255),  # Magenta
        track_color=(0, 255, 0),  # Green
        count_txt_color=(255, 255, 255),  # White
        count_bg_color=(50, 50, 50)  # Dark gray
    )

    prev_frame = None
    prev_keypoints = None
    processed_frames = 0

    try:
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            frame = resize_frame(frame, scale_percent)

            # Adjust line points based on scaling
            scaled_line_points = [(int(x * scale_percent / 100), int(y * scale_percent / 100)) for x, y in line_points]
            for point1, point2 in zip(scaled_line_points[:-1], scaled_line_points[1:]):
                cv2.line(frame, tuple(map(int, point1)), tuple(map(int, point2)), (255, 255, 0), int(line_thickness))

            tracks = model.track(frame, persist=persist, conf=conf, iou=iou, classes=classes, verbose=verbose)
            
            # Update the counter with the current frame and tracks
            frame = counter.start_counting(frame, tracks)

            # Check if the previous frame is initialized for optical flow calculation
            if prev_frame is not None:
                try:
                    prev_frame_resized = resize_frame(prev_frame, scale_percent)
                    matched_keypoints, status, _ = cv2.calcOpticalFlowPyrLK(prev_frame_resized, frame, prev_keypoints, None)
                    prev_keypoints = matched_keypoints
                except cv2.error as e:
                    print(f"Error in optical flow calculation: {e}")

            prev_frame = frame.copy()
            prev_keypoints = cv2.goodFeaturesToTrack(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)

            video_writer.write(frame)
            
            # Update progress
            processed_frames += 1
            progress(processed_frames / total_frames)
    finally:
        cap.release()
        video_writer.release()

    # Reduce the resolution of the video for download
    output_path = "processed_output.mp4"
    if h > 1080:
        resolution = "1920x1080"
    else:
        resolution = "1280x720"

    try:
        subprocess.run(
            ["ffmpeg", "-y", "-i", tmp_output_path, "-vf", f"scale={resolution}", "-crf", "18", "-preset", "veryfast", "-hide_banner", "-loglevel", "error", output_path],
            check=True
        )
    except subprocess.CalledProcessError as e:
        raise RuntimeError(f"Error during video processing: {e}")

    if os.path.exists(tmp_output_path):
        os.remove(tmp_output_path)

    return output_path

def preview_line(video_file, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness):
    cap = cv2.VideoCapture(video_file)
    if not cap.isOpened():
        raise ValueError("Failed to read video frame")

    ret, frame = cap.read()
    if not ret:
        raise ValueError("Failed to read video frame")

    frame = resize_frame(frame, scale_percent)
    line_points = [(line_start_x, line_start_y), (line_end_x, line_end_y)]
    scaled_line_points = [(int(x * scale_percent / 100), int(y * scale_percent / 100)) for x, y in line_points]
    for point1, point2 in zip(scaled_line_points[:-1], scaled_line_points[1:]):
        cv2.line(frame, tuple(map(int, point1)), tuple(map(int, point2)), (255, 255, 0), int(line_thickness))
    
    preview_path = "preview_line.jpg"
    cv2.imwrite(preview_path, frame)
    return preview_path

def gradio_app(video, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness, draw_tracks, view_img, view_in_counts, view_out_counts, track_thickness, region_thickness, line_dist_thresh, persist, conf, iou, classes_to_track, verbose):
    # Save the uploaded video to the main folder
    main_folder_video_path = "vehicle-counting.mp4"
    with open(main_folder_video_path, "wb") as f:
        f.write(open(video.name, "rb").read())
    
    progress = gr.Progress()
    total_frames = count_frames(main_folder_video_path)
    output_path = process_video(main_folder_video_path, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, int(line_thickness), draw_tracks, view_img, view_in_counts, view_out_counts, int(track_thickness), int(region_thickness), line_dist_thresh, persist, conf, iou, classes_to_track, verbose, progress)
    return output_path, output_path

def update_preview(video, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness):
    return preview_line(video.name, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, int(line_thickness))

def set_4k_coordinates():
    return 0, 1500, 3840, 1500

def set_1080p_coordinates():
    return 0, 700, 1920, 700

def use_example_video():
    example_video_path = "vehicle-counting.mp4"
    return example_video_path

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=1):
            video_input = gr.File(label="Upload your video")  # Removed max_size parameter
            example_button = gr.Button("Use Example Video")
            with gr.Row():
                set_4k_button = gr.Button("4K")
                set_1080p_button = gr.Button("1080p")
            line_start_x = gr.Number(label="Line Start X", value=500, precision=0)
            line_start_y = gr.Number(label="Line Start Y", value=1500, precision=0)
            line_end_x = gr.Number(label="Line End X", value=3400, precision=0)
            line_end_y = gr.Number(label="Line End Y", value=1500, precision=0)
            line_thickness = gr.Slider(minimum=1, maximum=10, value=2, label="Line Thickness")
            draw_tracks = gr.Checkbox(label="Draw Tracks", value=True)
            view_img = gr.Checkbox(label="Display Image with Annotations", value=True)
            view_in_counts = gr.Checkbox(label="Display In-Counts", value=True)
            view_out_counts = gr.Checkbox(label="Display Out-Counts", value=True)
            track_thickness = gr.Slider(minimum=1, maximum=10, value=2, label="Track Thickness")
            region_thickness = gr.Slider(minimum=1, maximum=10, value=5, label="Region Thickness")
            line_dist_thresh = gr.Slider(minimum=5, maximum=50, value=15, label="Line Distance Threshold")
            persist = gr.Checkbox(label="Persist Tracks", value=True)
            conf = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Confidence Threshold")
            iou = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.05, label="IOU Threshold")
            classes_to_track = gr.Textbox(label="Classes to Track (comma-separated ids)", value="2,3,5,7")
            verbose = gr.Checkbox(label="Verbose Tracking", value=True)
            scale_percent = gr.Slider(minimum=10, maximum=100, value=100, step=10, label="Scale Percentage")
            process_button = gr.Button("Process Video")
        with gr.Column(scale=2):
            preview_image = gr.Image(label="Preview Line")
            video_output = gr.Video(label="Processed Video")
            download_button = gr.File(label="Download Processed Video")

    def update_preview_and_display(video, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness):
        preview_path = update_preview(video, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness)
        return preview_path

    video_input.change(update_preview_and_display, inputs=[video_input, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness], outputs=preview_image)
    for component in [scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness, draw_tracks, view_img, view_in_counts, view_out_counts, track_thickness, region_thickness, line_dist_thresh, persist, conf, iou, classes_to_track, verbose]:
        component.change(update_preview_and_display, inputs=[video_input, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness], outputs=preview_image)

    set_4k_button.click(lambda: set_4k_coordinates(), outputs=[line_start_x, line_start_y, line_end_x, line_end_y])
    set_1080p_button.click(lambda: set_1080p_coordinates(), outputs=[line_start_x, line_start_y, line_end_x, line_end_y])

    def clear_previous_video():
        return None, None

    process_button.click(clear_previous_video, outputs=[video_output, download_button], queue=False)
    process_button.click(gradio_app, inputs=[video_input, scale_percent, line_start_x, line_start_y, line_end_x, line_end_y, line_thickness, draw_tracks, view_img, view_in_counts, view_out_counts, track_thickness, region_thickness, line_dist_thresh, persist, conf, iou, classes_to_track, verbose], outputs=[video_output, download_button])
    
    # Add the example button right below the video input
    example_button.click(use_example_video, outputs=[video_input])

demo.launch()