luminoussg's picture
Create app.py
a2f3593 verified
raw
history blame
12.4 kB
import gradio as gr
from ultralytics import YOLO
import tempfile
import os
import cv2
import numpy as np
import torch
import atexit
import uuid
# Load the YOLOv8 pose estimation model once at the start
model = YOLO("yolov8n-pose.pt")
# Define the skeleton connections based on COCO keypoints
COCO_KEYPOINTS = [
"nose", "left_eye", "right_eye", "left_ear", "right_ear",
"left_shoulder", "right_shoulder", "left_elbow", "right_elbow",
"left_wrist", "right_wrist", "left_hip", "right_hip",
"left_knee", "right_knee", "left_ankle", "right_ankle"
]
# Define the skeleton as pairs of keypoints indices
SKELETON_CONNECTIONS = [
(0, 1), (0, 2), # Nose to eyes
(1, 3), (2, 4), # Eyes to ears
(0, 5), (0, 6), # Nose to shoulders
(5, 6), # Shoulders to each other
(5, 7), (6, 8), # Shoulders to elbows
(7, 9), (8, 10), # Elbows to wrists
(5, 11), (6, 12), # Shoulders to hips
(11, 12), # Hips to each other
(11, 13), (12, 14), # Hips to knees
(13, 15), (14, 16) # Knees to ankles
]
def calculate_torso_angle(keypoints, frame_height):
"""
Calculate the angle of the torso with respect to the vertical axis.
Args:
keypoints (numpy.ndarray): Array of shape (17, 3) representing COCO keypoints.
frame_height (int): Height of the video frame in pixels.
Returns:
float: Angle in degrees. Returns None if keypoints are not detected properly.
"""
try:
# COCO keypoint indices
LEFT_SHOULDER = 5
RIGHT_SHOULDER = 6
LEFT_HIP = 11
RIGHT_HIP = 12
# Extract shoulder and hip coordinates
left_shoulder = keypoints[LEFT_SHOULDER][:2]
right_shoulder = keypoints[RIGHT_SHOULDER][:2]
left_hip = keypoints[LEFT_HIP][:2]
right_hip = keypoints[RIGHT_HIP][:2]
# Check visibility (visibility > 0.3)
if (keypoints[LEFT_SHOULDER][2] < 0.3 or keypoints[RIGHT_SHOULDER][2] < 0.3 or
keypoints[LEFT_HIP][2] < 0.3 or keypoints[RIGHT_HIP][2] < 0.3):
return None
# Calculate mid points
mid_shoulder = (left_shoulder + right_shoulder) / 2
mid_hip = (left_hip + right_hip) / 2
# Calculate the vector of the torso
vector = mid_hip - mid_shoulder
# Calculate angle with respect to the vertical axis
angle_rad = np.arctan2(vector[0], vector[1])
angle_deg = np.degrees(angle_rad)
return angle_deg
except Exception as e:
print(f"Error calculating torso angle: {e}")
return None
def draw_skeleton(frame, keypoints, show_labels=True):
"""
Draws the skeleton on the frame based on keypoints.
Args:
frame (numpy.ndarray): The current video frame.
keypoints (numpy.ndarray): Array of shape (17, 3) representing COCO keypoints.
show_labels (bool): Whether to display keypoint indices.
Returns:
numpy.ndarray: Annotated frame with skeleton.
"""
for connection in SKELETON_CONNECTIONS:
start_idx, end_idx = connection
x_start, y_start, conf_start = keypoints[start_idx]
x_end, y_end, conf_end = keypoints[end_idx]
# Only draw if both keypoints have sufficient confidence
if conf_start > 0.5 and conf_end > 0.5:
start_point = (int(x_start), int(y_start))
end_point = (int(x_end), int(y_end))
cv2.line(frame, start_point, end_point, (255, 0, 0), 2) # Blue lines
if show_labels:
# Draw keypoints indices
for idx, (x, y, conf) in enumerate(keypoints):
if conf > 0.5:
cv2.putText(frame, f"{idx}", (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 0, 0), 1) # Blue labels
return frame
def detect_fall(video_path, angle_threshold=30, consecutive_frames=3, frame_sampling_rate=1, confidence_threshold=0.3, show_labels=True):
"""
Detects falls in the uploaded video using pose estimation.
Args:
video_path (str): The path to the input video file uploaded by the user.
angle_threshold (float): Angle threshold to classify a fall (in degrees).
consecutive_frames (int): Number of consecutive frames to confirm a fall.
frame_sampling_rate (int): Process every nth frame.
confidence_threshold (float): Minimum confidence required for keypoint detection.
show_labels (bool): Whether to display keypoint indices.
Returns:
tuple: (annotated_video_path, notification_message)
"""
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError("Unable to open the video file.")
# Video properties
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# Create a unique temporary file for the annotated video
unique_id = uuid.uuid4().hex
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4", prefix=f"annotated_{unique_id}_") as tmp:
annotated_video_path = tmp.name
out = cv2.VideoWriter(annotated_video_path, fourcc, fps, (width, height))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
current_frame = 0
consecutive_fall_frames = 0
total_falls = 0
fall_frames = [] # To store frames where falls were detected
while True:
ret, frame = cap.read()
if not ret:
break # End of video
current_frame += 1
# Implement frame sampling
if current_frame % frame_sampling_rate != 0:
out.write(frame)
continue
print(f"Processing frame {current_frame}/{frame_count}")
# Run pose estimation
results = model.predict(source=frame, conf=confidence_threshold, save=False, stream=False)
# Iterate through detected persons
for result in results:
if not hasattr(result, 'keypoints') or result.keypoints is None:
continue
for keypoints in result.keypoints.data:
# keypoints should be a tensor of shape (17,3)
if keypoints is None or not hasattr(keypoints, 'cpu'):
continue
# Convert to NumPy array
if isinstance(keypoints, torch.Tensor):
kpts = keypoints.cpu().numpy()
elif isinstance(keypoints, np.ndarray):
kpts = keypoints
else:
print(f"Unexpected keypoints data type: {type(keypoints)}")
continue
if kpts.size == 0 or kpts.shape[0] < 17:
print(f"Insufficient keypoints for processing in frame {current_frame}")
continue
angle = calculate_torso_angle(kpts, height)
if angle is None:
continue
# Determine if it's a fall
if abs(angle) > angle_threshold:
consecutive_fall_frames += 1
label = "Fall Detected!"
color = (0, 0, 255) # Red
else:
if consecutive_fall_frames >= consecutive_frames:
total_falls += 1
fall_frames.append(current_frame)
consecutive_fall_frames = 0
label = "Normal"
color = (0, 255, 0) # Green
# If fall persists over consecutive frames, mark as fall
if consecutive_fall_frames >= consecutive_frames:
cv2.putText(frame, label, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)
# Draw keypoints and skeleton
frame = draw_skeleton(frame, kpts, show_labels=show_labels)
# Write annotated frame
out.write(frame)
# Release resources
cap.release()
out.release()
# Final check for falls that persisted until the end of the video
if consecutive_fall_frames >= consecutive_frames:
total_falls += 1
fall_frames.append(current_frame)
# Generate notification message
if total_falls > 0:
if total_falls == 1:
notification = f"A fall was detected at frame {fall_frames[0]}."
else:
frames = ', '.join(map(str, fall_frames))
notification = f"{total_falls} falls were detected at frames: {frames}."
else:
notification = "No falls were detected in the video."
# Check if annotated video was created
if not os.path.exists(annotated_video_path):
raise FileNotFoundError("Annotated video was not found. Please check the model and processing steps.")
return annotated_video_path, notification
except Exception as e:
# Clean up in case of an error
print(f"Error during fall detection: {e}")
return None, f"An error occurred during fall detection: {e}"
def create_gradio_interface():
# Define the Gradio interface with adjustable parameters
iface = gr.Interface(
fn=detect_fall,
inputs=[
gr.Video(label="Upload Video"),
gr.Slider(
label="Angle Threshold (degrees)",
minimum=0,
maximum=90,
step=1,
value=30,
interactive=True,
info="Adjust the torso angle threshold to classify a fall. Lower values increase sensitivity."
),
gr.Slider(
label="Consecutive Frames to Confirm Fall",
minimum=1,
maximum=10,
step=1,
value=3,
interactive=True,
info="Number of consecutive frames exceeding the angle threshold required to confirm a fall."
),
gr.Slider(
label="Frame Sampling Rate",
minimum=1,
maximum=10,
step=1,
value=1,
interactive=True,
info="Process every nth frame to speed up detection. Higher values reduce processing time."
),
gr.Slider(
label="Confidence Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.3, # Changed default value to 0.3
interactive=True,
info="Minimum confidence required for keypoint detection. Higher values reduce false positives."
),
gr.Checkbox(
label="Show Keypoint Labels",
value=True,
interactive=True,
info="Toggle the display of keypoint indices on the video."
)
],
outputs=[
gr.Video(label="Annotated Video"),
gr.Textbox(label="Fall Detection Notification")
],
title="Fall Detection App 🚨",
description=(
"Upload a video of a person falling, and the app will detect and annotate the fall "
"using pose estimation. Adjust the angle threshold, consecutive frames, frame sampling rate, "
"and confidence threshold to fine-tune detection sensitivity and performance. "
"The annotated video will display keypoints, skeleton lines, and indicate when a fall is detected."
),
examples=[
["demo/person falling.mp4", 30, 3, 1, 0.3, True]
], # Added example video with corresponding parameter values
flagging_mode="never", # Updated parameter name
)
return iface
# Create the Gradio interface
iface = create_gradio_interface()
# Ensure temporary directories are cleaned up on exit
def cleanup_temp_dirs():
temp_dir = tempfile.gettempdir()
# Implement additional cleanup logic if necessary
atexit.register(cleanup_temp_dirs)
# Launch the app
if __name__ == "__main__":
iface.launch()