Spaces:
Running
Running
Commit
·
f625e51
1
Parent(s):
a1955a4
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,81 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
|
|
3 |
from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
description_sentence = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotion in a sentence."
|
7 |
description2 = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotions in a dataset.\nThe data should be in tsv-format with two named columns: the first column (id) should contain the sentence IDs, and the second column (text) should contain the actual texts. Optionally, there is a third column named 'date', which specifies the date associated with the text (e.g., tweet date). This column is necessary when the options 'emotion distribution over time' and 'peaks' are selected."
|
8 |
|
9 |
inference_modelpath = "model/checkpoint-128"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def what_happened(text, file_object, option_list):
|
12 |
if file_object:
|
@@ -24,21 +93,14 @@ def what_happened1(text):
|
|
24 |
return output
|
25 |
|
26 |
def what_happened2(file_object, option_list):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
input_file = open(file_object.name, 'r')
|
36 |
-
lines = input_file.read()
|
37 |
-
input_file.close()
|
38 |
-
output_file = open('output.txt', 'w')
|
39 |
-
output_file.write(lines)
|
40 |
-
output_file.close()
|
41 |
-
output1 = 'output.txt'
|
42 |
output2 = output3 = output4 = output5 = "This option was not selected."
|
43 |
if "emotion frequencies" in option_list:
|
44 |
output2 = "This option was selected."
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification
|
6 |
+
from transformers import TrainingArguments, Trainer
|
7 |
+
|
8 |
+
from datasets import load_dataset
|
9 |
|
10 |
|
11 |
description_sentence = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotion in a sentence."
|
12 |
description2 = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotions in a dataset.\nThe data should be in tsv-format with two named columns: the first column (id) should contain the sentence IDs, and the second column (text) should contain the actual texts. Optionally, there is a third column named 'date', which specifies the date associated with the text (e.g., tweet date). This column is necessary when the options 'emotion distribution over time' and 'peaks' are selected."
|
13 |
|
14 |
inference_modelpath = "model/checkpoint-128"
|
15 |
+
output_dir = "model"
|
16 |
+
model_config = {
|
17 |
+
"model_weights": "pdelobelle/robbert-v2-dutch-base",
|
18 |
+
"num_labels": 6,
|
19 |
+
"max_length": 128,
|
20 |
+
"device": "cpu"
|
21 |
+
}
|
22 |
+
|
23 |
+
## Tokenizer and model
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_config["model_weights"])
|
25 |
+
model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
|
26 |
+
|
27 |
+
# Function for encoding (tokenizing) data
|
28 |
+
def encode_data(data):
|
29 |
+
text = data["text"]
|
30 |
+
label = data["label"]
|
31 |
+
encoded_input = tokenizer(
|
32 |
+
text,
|
33 |
+
add_special_tokens=True,
|
34 |
+
max_length= model_config["max_length"],
|
35 |
+
padding= "max_length",
|
36 |
+
return_overflowing_tokens=True,
|
37 |
+
truncation=True
|
38 |
+
)
|
39 |
+
encoded_input["labels"] = label
|
40 |
+
return encoded_input
|
41 |
+
|
42 |
+
|
43 |
+
# Test arguments for Trainer
|
44 |
+
test_args = TrainingArguments(
|
45 |
+
output_dir = output_dir,
|
46 |
+
do_train = False,
|
47 |
+
do_predict = True,
|
48 |
+
per_device_eval_batch_size = 64,
|
49 |
+
dataloader_drop_last = False
|
50 |
+
)
|
51 |
+
trainer = Trainer(
|
52 |
+
model = model,
|
53 |
+
args = test_args)
|
54 |
+
|
55 |
+
def inference_dataset(file_object):
|
56 |
+
#input_file = open(file_object.name, 'r')
|
57 |
+
input_file = file_object
|
58 |
+
data_paths = {"train": input_file, "inference": input_file}
|
59 |
+
dataset = load_dataset('csv', skiprows=1, data_files=data_paths, column_names = ['id', 'text', 'label'], delimiter='\t')
|
60 |
+
encoded_dataset = dataset.map(encode_data, batched=True)
|
61 |
+
encoded_dataset.set_format("torch")
|
62 |
+
encoded_dataset["inference"] = encoded_dataset["inference"].remove_columns("label")
|
63 |
+
# Run trainer in prediction mode
|
64 |
+
prediction_output = trainer.predict(encoded_dataset["inference"])
|
65 |
+
predictions = prediction_output[0]
|
66 |
+
ids = dataset["inference"]["id"]
|
67 |
+
texts = dataset["inference"]["text"]
|
68 |
+
preds = np.argmax(predictions, axis=1)
|
69 |
+
preds = [model.config.id2label[pred] for pred in preds]
|
70 |
+
predictions_content = list(zip(ids, texts, preds))
|
71 |
+
# write predictions to file
|
72 |
+
output = "output.txt"
|
73 |
+
f = open(output, 'w')
|
74 |
+
f.write("id\ttext\tprediction\n")
|
75 |
+
for line in predictions_content:
|
76 |
+
f.write(str(line[0]) + '\t' + str(line[1]) + '\t' + str(line[2]) + '\n')
|
77 |
+
f.close()
|
78 |
+
return output
|
79 |
|
80 |
def what_happened(text, file_object, option_list):
|
81 |
if file_object:
|
|
|
93 |
return output
|
94 |
|
95 |
def what_happened2(file_object, option_list):
|
96 |
+
#input_file = open(file_object.name, 'r')
|
97 |
+
#lines = input_file.read()
|
98 |
+
#input_file.close()
|
99 |
+
#output_file = open('output.txt', 'w')
|
100 |
+
#output_file.write(lines)
|
101 |
+
#output_file.close()
|
102 |
+
#output1 = 'output.txt'
|
103 |
+
output1 = inference_dataset(file_object.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
output2 = output3 = output4 = output5 = "This option was not selected."
|
105 |
if "emotion frequencies" in option_list:
|
106 |
output2 = "This option was selected."
|